MBF Bioscience Blog

MBF Bioscience > MBF Bioscience Blog (Page 5)

New Software Application Quantifies Changes in Dendritic Spine Morphology Over Time Williston, VT — December 10, 2019 — The ability to track the changes that occur in dendritic spine morphology over time is critical to many scientific studies, which is why MBF Bioscience is pleased to announce the launch of MicroDynamix. This powerful new software application helps neuroscientists acquire more information about morphological changes in the...

Read More

Something big is happening at MBF Bioscience. Something that will make your work better than ever before. Over the past 32 years we have taken pride in offering our customers the best tools for their research. And we are constantly striving to make things even better for you. Get ready, because something extraordinary is coming in 2020. Something that will make your work faster and more efficient....

Read More

Scientists use NeuroInfo to help navigate the brain and compare findings across labs Reproducibility has always been a primary goal in science. But the human effort involved in replicating a research study and analyzing the results, can be considerable. NeuroInfo®is a revolutionary new tool that scientists are using to register whole slide images into a standardized mouse brain atlas in an easy, automated way. Images...

Read More

Dr. Edmund Glaser devoted his career of more than four decades to the field of neuroscience. Most notably, in 1963, he co-invented computer microscopy, a pioneering method of quantifying the brain’s morphometry. This technology, for the first time, applied computer techniques to the neuroanatomical world, permitting scientists to precisely quantify the brain’s three-dimensional structure. It simplified time-consuming, inexact classical methodologies in an efficient and cost-effective...

Read More

It is not uncommon for war veterans returning home from war-zones like Iraq and Afghanistan to suffer from blast-induced traumatic brain injuries (TBI). In these situations, the most common types of blasts are lower level blasts, the kind that produce mild TBIs (mTBI). Though the effects of a mTBI aren’t visible from the outside, scientists say the blood vessels inside the brain are deeply altered. In...

Read More

Combination of new microscopy and expansion tissue preparation methods facilitate better and faster analysis of subcellular neural elements. Today, the journal Science published a paper authored by a research team led by Dr. Ed Boyden of MIT and Nobel Prize recipient Dr. Eric Betzig of Janelia Research Campus. Among the authors are MBF Bioscience Scientific Director Dr. Susan Tappan and Senior Software Engineer Alfredo Rodriguez. In the...

Read More

FOR IMMEDIATE RELEASE

MBF Bioscience Williston, VT – January 9, 2019 – MBF Bioscience is pleased to announce our participation in the Stimulating Peripheral Activity to Relieve Conditions (SPARC) program. Funded by the National Institutes of Health (NIH), this extensive research initiative is a vast collaborative effort, which aims to deepen the understanding of how the peripheral nervous system impacts internal organ function.

“We are honored to be working in collaboration with over 40 research teams in the United States and around the world who are making revolutionary discoveries about how the network of nerves located outside the brain and spinal cord affect organs such as the heart, stomach, and bladder, and what role these nerves play in diseases like hypertension and type II diabetes as well as gastrointestinal and inflammatory disorders,” says Jack Glaser, President of MBF Bioscience.

To facilitate this important research, MBF Bioscience will provide the collaborating research scientists with both software and support. Specifically, we will provide image segmentation tools developed to handle large and diverse amounts of scientific image data. Software applications such as Neurolucida 360®, Tissue Mapperand Tissue Makerwill enable researchers to image and analyze nerves, tissues, and entire organs in 2D and 3D.

“Representing the innervation patterns accurately and robustly is an essential contribution to the generation of representative models that can be used for simulations.  We are working with our partners at the University of Auckland, under the direction of Professor Peter Hunter, to create these models for each organ system that will be an enduring resource for scientists for years to come,” says Susan Tappan, Scientific Director at MBF Bioscience.

Researchers involved in the SPARC program are making important advances in health and medicine, which may lead to the development of new therapies for managing an array of illnesses and disorders. Some examples of research areas include subcutaneous nerve stimulation for arrhythmia control, sensory neuromodulation of the esophagus, and mapping of the neural circuitry of bone marrow. We are thrilled about this opportunity to work in partnership with such an impressive array of research teams on this ground-breaking project.

Read More

MBF Bioscience now offers customized models of Huron Digital Pathology’s TissueScope, a line of whole slide scanners, and supports TissueScope images across its range of analysis software. October 23, 2018 – Huron Digital Pathology and MBF Bioscience are proud to announce their partnership to offer customized models of Huron’s TissueScope whole slide scanners integrated with MBF’s Stereo Investigator®- Whole Slide Edition, NeuroInfo®, Biolucida®, and BrainMaker®...

Read More

Neurolucida and Neurolucida Explorer Used for 3D Reconstruction and Quantitative Analysis Researchers used Neurolucida to reconstruct a newly discovered type of neuron found only in the human brain, according to a study published in the journal Nature Neuroscience. Known as “rosehip” neurons because of the way they resemble a rose after its petals have fallen off, these cells feature compact, bushy axonal arborizations. Found in the first...

Read More

Williston, VT – September 5, 2018 – Researchers studying microvascular networks and vessels have a groundbreaking new software application to facilitate their work. Developed by MBF Bioscience, Vesselucida® 360 automatically reconstructs and analyzes microvascular networks in 3D.

Specifically designed to recognize the intricacies of the vascular system, Vesselucida features sophisticated algorithms that quickly and accurately create 3D reconstructions of images and tissue specimens. Built-in analyses provide data on segments and node counts, frequency of anastomoses, as well as metrics on vessel surface and volume.

Automatic reconstruction of vascular structure labeled with tomato lectin
Image courtesy Dr. Stan Watson, University of Michigan, USA

Vesselucida 360 also features a full suite of tools, which lets researchers manually trace and edit 3D reconstructions to fine-tune particularly complex image data. Companion analysis software, Vesselucida Explorer performs sophisticated data analysis for scientists seeking answers to their most challenging research questions.

Read More