Neurolucida 360 is the premier tool used by neuroscientists to quickly and accurately reconstruct any neuron of any species from a variety of labeling and microscopy techniques. Machine learning, coupled with the most advanced 3D image detection algorithms, perform accurate reconstruction of neuronal structures that range in scale from complex, multicellular networks of neurons, to sub-cellular components such as dendritic spines, varicosities and putative synapses.
Neurolucida 360 is engineered to work efficiently with even the largest 3D multi-channel datasets using intelligent precognitive image handling.
Neurolucida 360: The leading image analysis software for automatic 3D neuron reconstruction and quantitative morphology
Neurolucida 360 is the most trusted software for comprehensive neuron reconstruction. Built by neuroscientists for neuroscientists, Neurolucida 360 is equipped with powerful automated algorithms for detection of neuronal structures present in 2D and 3D microscopy image data.
With built-in workflows, an intuitive user-interface, and interactive 3D environment, Neurolucida 360 makes it easy to reconstruct somas, axons, dendrites, varicosities, spines, and synapses.
Paired with the companion software, Neurolucida Explorer, you can quickly and effectively analyze the morphology of subcellular structures, whole cells, or complex connective networks – from any species.
Neurolucida 360 has been developed with support from the National Institute of Mental Health (NIMH)
Minimum System Requirements |
|
Operating System |
Windows 10, 64-bit |
Processor |
4-core |
CPU RAM |
16 GB |
GPU RAM |
>6 GB |
Recommended System Requirements |
|
Operating System |
Windows 10, 64-bit |
Processor |
8-core |
CPU RAM |
64 GB |
GPU RAM |
>8 GB |
Storage |
Solid state drive(s) |
Input Specifications |
|
Supported image file formats |
CZI, HDF5, H5, IMS, JP2, JPG, JPEG, JPF, MJC, JPX, LIF, LSM, ND2, OIB, OIF, TIF, TIFF, SVS |
Output Specifications |
|
Model data output formats |
XML*, ASC, DAT, SVG |
|
* Our XML data file format, the Neuromorphological File Specification (NFS), was recently endorsed as a standard by the INCF. |
Image file output formats |
JP2, JPX, TIFF |
Movie export format |
MP4 |
Case Study: MIT, Janelia Research Campus and Harvard Medical School
Novel dendritic spine analysis using Expansion Microscopy and Light Sheet Microscopy
>> Learn More
Case Study: Allen Institute for Brain Science and University of Szeged
Scientists Discover New “Rosehip” Neuron in Human Brain
>> Learn More
Case Study: Western Sydney University
Curcumin Lowers Neuroinflammation in Mouse Model
>> Learn More
Case Study: University of Alabama
Researchers Identify Potential Treatment for Patients at Risk for Alzheimer’s Disease
>> Learn More
Case Study: Stanford University
Scientists Render Mouse Brain Transparent, Offering New Possibilities For 3D Analysis
>> Learn More
Joy, M. T., S. P. Bridges, et al. (2023). Quantitative Spatial Mapping of Axons Across Cortical Regions to Assess Axonal Sprouting After Stroke. Neural Repair: Methods and Protocols. V. T. Karamyan and A. M. Stowe. New York, NY, Springer US: 171-180. https://doi.org/10.1007/978-1-0716-2926-0_13
Farid, H., W. B. Gelford, et al. (2023). "Fast Blue and Cholera Toxin-B Survival Guide for Alpha-Motoneurons Labeling: Less Is Better in Young B6SJL Mice, but More Is Better in Aged C57Bl/J Mice." Bioengineering 10(2): 141. https://doi.org/10.3390/bioengineering10020141
Gómez-Oliva, R., S. Martínez-Ortega, et al. (2023). "Rescue of neurogenesis and age-associated cognitive decline in SAMP8 mouse: role of transforming growth factor alpha." bioRxiv: 2023.2001.2014.524036. https://doi.org/10.1101/2023.01.14.524036
Sharma, D. R., B. Cheng, et al. (2023). "Elevated insulin growth factor-1 in dentate gyrus induces cognitive deficits in pre-term newborns." Cerebral Cortex: bhac516. https://doi.org/10.1093/cercor/bhac516
Jaffey, D. M., J. McAdams, et al. "Vagal Preganglionic Axons Arborize in the Myenteric Plexus into Two Types: Nitrergic and Non-nitrergic Postganglionic Motor Pools?" American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 0(0): null. https://doi.org/10.1152/ajpregu.00260.2022
Steffen, D. M., C. M. Hanes, et al. (2023). "A unique role for Protocadherin γC3 in promoting dendrite arborization through an Axin1-dependent mechanism." The Journal of Neuroscience: JN-RM-0729-0722. https://doi.org/10.1523/JNEUROSCI.0729-22.2022
Sun, J., S. Osenberg, et al. (2023). "Mutations in the transcriptional regulator MeCP2 severely impact key cellular and molecular signatures of human astrocytes during maturation." Cell Reports 42(1): 111942. https://doi.org/10.1016/j.celrep.2022.111942
Freire-Cobo, C., E. S. Rothwell, et al. (2022). "Neuronal vulnerability to brain aging and neurodegeneration in cognitively impaired marmoset monkeys (Callithrix jacchus)." Neurobiology of Aging. https://doi.org/10.1016/j.neurobiolaging.2022.12.001
Plachez, C., V. Tsytsarev, et al. (2022). "Amyloid deposition and dendritic complexity of corticocortical projection cells in 5xFAD mouse." Neuroscience. https://doi.org/10.1016/j.neuroscience.2022.12.013
Hasegawa, K., T. K. Matsui, et al. (2022). "N-WASP-Arp2/3 signaling controls multiple steps of dendrite maturation in Purkinje cells in vivo." Development 149(23). https://doi.org/10.1242/dev.201214
Stark, R. A., B. Brinkman, et al. (2023). "Atypical play experiences in the juvenile period has an impact on the development of the medial prefrontal cortex in both male and female rats." Behavioural Brain Research 439: 114222. https://doi.org/10.1016/j.bbr.2022.114222
Takahashi, M., T. Kobayashi, et al. (2022). "Preferential arborization of dendrites and axons of parvalbumin- and somatostatin-positive GABAergic neurons within subregions of the mouse claustrum." Neuroscience Research. https://doi.org/10.1016/j.neures.2022.11.008
Beebe, N. L., M. A. Silveira, et al. (2022). "Neurotransmitter phenotype and axonal projection patterns of VIP-expressing neurons in the inferior colliculus." Journal of Chemical Neuroanatomy 126: 102189. https://doi.org/10.1016/j.jchemneu.2022.102189
Guerra, K. T. K., J. Renner, et al. (2022). "Human cortical amygdala dendrites and spines morphology under open-source three-dimensional reconstruction procedures." Journal of Comparative Neurology n/a(n/a). https://doi.org/10.1002/cne.25430
Wei, J.-R., Z.-Z. Hao, et al. (2022). "Identification of visual cortex cell types and species differences using single-cell RNA sequencing." Nature Communications 13(1): 6902. https://doi.org/10.1038/s41467-022-34590-1
Tariq, K., E. Cullen, et al. (2022). "Disruption of mTORC1 rescues neuronal overgrowth and synapse function dysregulated by Pten loss." Cell Reports 41(5): 111574. https://doi.org/10.1016/j.celrep.2022.111574
Green, T. R. F., S. M. Murphy, et al. (2022). "Comparisons of quantitative approaches for assessing microglial morphology reveal inconsistencies, ecological fallacy, and a need for standardization." Scientific Reports 12(1): 18196. https://doi.org/10.1038/s41598-022-23091-2
Usende, I. L., J. O. Olopade, et al. (2022). "Neuroecotoxicology: Effects of environmental heavy metal exposure on the brain of African giant rats and the contribution of vanadium to the neuropathology." IBRO Neuroscience Reports 13: 215-234. https://doi.org/10.1016/j.ibneur.2022.08.008
Kim, D. H., S. J. Lee, et al. (2022). "Whole structural reconstruction and quantification of epidermal innervation through the suction blister method and skin-clearing technique." Scientific Reports 12(1): 13596. https://doi.org/10.1038/s41598-022-16986-7
Agnew-Svoboda, W., T. Ubina, et al. (2022). "A genetic tool for the longitudinal study of a subset of post-inflammatory reactive astrocytes." Cell Reports Methods 2(8): 100276. https://doi.org/10.1016/j.crmeth.2022.100276
Merino-Serrais, P., S. Plaza-Alonso, et al. (2022). "Microanatomical study of pyramidal neurons in the contralesional somatosensory cortex after experimental ischemic stroke." Cerebral Cortex: bhac121. https://doi.org/10.1093/cercor/bhac121
de Prisco, N., A. Chemiakine, et al. (2022). "Protocol to assess the effect of disease-driving variants on mouse brain morphology and primary hippocampal neurons." STAR Protocols 3(2): 101244. https://doi.org/10.1016/j.xpro.2022.101244
wu, s., Y. Yuye, et al. (2022). "FUS aggregation following ischemic stroke favors brain astrocyte activation through inducing excessive autophagy" Cellular and Molecular Neurobiology. https://doi.org/10.21203/rs.3.rs-1411533/v1
Jiang, S., L. Xiao, et al. (2022). "The GABAB receptor agonist STX209 reverses the autism‑like behaviour in an animal model of autism induced by prenatal exposure to valproic acid." Mol Med Rep 25(5): 154. https://doi.org/10.3892/mmr.2022.12670
Pollo, M. L. M., C. Gimenes, et al. (2022). "Male rats are more vulnerable to pentylenetetrazole-kindling model but females have more spatial memory-related deficits." Epilepsy & Behavior 129: 108632. https://doi.org/10.1016/j.yebeh.2022.108632
Shao, Y., Q. Ge, et al. (2022). "Pathological Networks Involving Dysmorphic Neurons in Type II Focal Cortical Dysplasia." Neuroscience Bulletin. https://doi.org/10.1007/s12264-022-00828-7
Wang, Q., Y. Wang, et al. (2022). "Regional and cell type-specific afferent and efferent projections of the mouse claustrum." bioRxiv: 2022.2002.2023.481555. 10.1101/2022.02.23.481555
Cheon, S., A. M. Culver, et al. (2022). "Counteracting epigenetic mechanisms regulate the structural development of neuronal circuitry in human neurons." Molecular Psychiatry. 10.1038/s41380-022-01474-1
Fournel, R., M. L. Veruki, et al. (2022). "Digital reconstruction and quantitative morphometric analysis of bipolar cells in live rat retinal slices." Journal of Comparative Neurology n/a(n/a). https://doi.org/10.1002/cne.25308
Getz, S. A., K. Tariq, et al. (2022). "PTEN Regulates Dendritic Arborization by Decreasing Microtubule Polymerization Rate." The Journal of Neuroscience: JN-RM-1835-1821. https://doi.org/10.1523/JNEUROSCI.1835-21.2022
Sanders, B., D. D’Andrea, et al. (2022). "Transcriptional programs regulating neuronal differentiation are disrupted in DLG2 knockout human embryonic stem cells and enriched for schizophrenia and related disorders risk variants." Nature Communications 13(1): 27. https://doi.org/10.1038/s41467-021-27601-0
Hartveit, E., M. L. Veruki, et al. (2022). "Dendritic morphology of an inhibitory retinal interneuron enables simultaneous local and global synaptic integration." The Journal of Neuroscience: JN-RM-0695-0621. https://doi.org/10.1523/JNEUROSCI.0695-21.2021
Standiford, M. M., E. M. Grund, et al. (2021). "Citrullinated myelin induces microglial TNFα and inhibits endogenous repair in the cuprizone model of demyelination." Journal of Neuroinflammation 18(1): 305. https://doi.org/10.1186/s12974-021-02360-3
van Rhijn, J.-R., Y. Shi, et al. (2022). "Brunner syndrome associated MAOA mutations result in NMDAR hyperfunction and increased network activity in human dopaminergic neurons." Neurobiology of Disease 163: 105587. https://doi.org/10.1016/j.nbd.2021.105587
Havton, L. A., N. P. Biscola, et al. (2021). "Human organ donor-derived vagus nerve biopsies allow for well-preserved ultrastructure and high-resolution mapping of myelinated and unmyelinated fibers." Scientific Reports 11(1): 23831. https://doi.org/10.1038/s41598-021-03248-1
Yu, T.-S., Y. Tensaouti, et al. (2021). "Astrocytic ApoE underlies maturation of hippocampal neurons and cognitive recovery after traumatic brain injury in mice." Communications Biology 4(1): 1303. https://doi.org/10.1038/s42003-021-02841-4
Weber, A. J., A. B. Adamson, et al. (2021). "Conditional deletion of ROCK2 induces anxiety-like behaviors and alters dendritic spine density and morphology on CA1 pyramidal neurons." Molecular Brain 14(1): 169. https://doi.org/10.1186/s13041-021-00878-4
Yang, C., Y. Tian, et al. (2021). "Restoration of FMRP expression in adult V1 neurons rescues visual deficits in a mouse model of fragile X syndrome." Protein & Cell. https://doi.org/10.1007/s13238-021-00878-z
Lentini, C., M. d’Orange, et al. (2021). "Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy." Cell Stem Cell. https://doi.org/10.1016/j.stem.2021.09.002
Shirinpour, S., N. Hananeia, et al. "Multi-scale modeling toolbox for single neuron and subcellular activity under Transcranial Magnetic Stimulation." Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. https://doi.org/10.1016/j.brs.2021.09.004
Achilly, N. P., Wang, W., & Zoghbi, H. Y. (2021). Presymptomatic training mitigates functional deficits in a mouse model of Rett syndrome. Nature. doi: 10.1038/s41586-021-03369-7. https://doi.org/10.1038/s41586-021-03369-7
Adler, S. M., Girotti, M., & Morilak, D. A. (2020). Optogenetically-induced long term depression in the rat orbitofrontal cortex ameliorates stress-induced reversal learning impairment. Neurobiology of Stress, 13, 100258. doi: https://doi.org/10.1016/j.ynstr.2020.100258. http://www.sciencedirect.com/science/article/pii/S2352289520300485
Allen, A. G., Worell, S. D., Nwaozo, G. C., Madrid, R., Dampier, W., Nonnemacher, M. R., & Wigdahl, B. (2019). Abstracts of the 16th International Symposium on NeuroVirology November 12-16, 2019 Atlanta, GA, USA. [journal article]. Journal of NeuroVirology. doi: 10.1007/s13365-019-00807-1. https://doi.org/10.1007/s13365-019-00807-1
Asede, D., Doddapaneni, D., Chavez, A., Okoh, J., Ali, S., Von-Walter, C., & Bolton, M. M. (2021). Apical intercalated cell cluster: A distinct sensory regulator in the amygdala. Cell Reports, 35(7), 109151. doi: https://doi.org/10.1016/j.celrep.2021.109151. https://www.sciencedirect.com/science/article/pii/S2211124721004939
Ayata, P., Badimon, A., Strasburger, H. J., Duff, M. K., Montgomery, S. E., Loh, Y.-H. E., . . . Schaefer, A. (2018). Epigenetic regulation of brain region-specific microglia clearance activity. Nature Neuroscience, 21(8), 1049-1060. doi: 10.1038/s41593-018-0192-3. https://doi.org/10.1038/s41593-018-0192-3
Baharani, A., Wei, Z., Roesler, W. J., & Mousseau, D. D. (2020). A Progressive Loss of phosphoSer138-Profilin Aligns with Symptomatic Course in the R6/2 Mouse Model of Huntington’s Disease: Possible Sex-Dependent Signaling. Cellular and Molecular Neurobiology. doi: 10.1007/s10571-020-00984-2. https://doi.org/10.1007/s10571-020-00984-2
Baker, C. A., Bolton, M. M., & Parra, A. (2019). Regional Specialization of Pyramidal Neuron Morphology and Physiology in the Tree Shrew Neocortex. Cerebral Cortex. doi: 10.1093/cercor/bhy326. https://dx.doi.org/10.1093/cercor/bhy326
Baltussen, L. L., Negraes, P. D., Silvestre, M., Claxton, S., Moeskops, M., Christodoulou, E., . . . Ultanir, S. K. (2018). Chemical genetic identification of CDKL5 substrates reveals its role in neuronal microtubule dynamics. [10.15252/embj.201899763]. The EMBO Journal. doi. http://emboj.embopress.org/content/early/2018/09/28/embj.201899763.abstract
Bannatyne, B. A., Hao, Z.-Z., Dyer, G. M. C., Watanabe, M., Maxwell, D. J., & Berkowitz, A. (2020). Neurotransmitters and motoneuron contacts of multifunctional and behaviorally specialized turtle spinal cord interneurons. The Journal of Neuroscience, 2200-2219. doi: 10.1523/jneurosci.2200-19.2020. http://www.jneurosci.org/content/early/2020/02/14/JNEUROSCI.2200-19.2020...
Bayne, M., Alvarsson, A., Devarakonda, K., Li, R., Jimenez-Gonzalez, M., Garibay, D., . . . Stanley, S. A. (2020). Repeated hypoglycemia remodels neural inputs and disrupts mitochondrial function to blunt glucose-inhibited GHRH neuron responsiveness. JCI Insight, 5(21). doi: 10.1172/jci.insight.133488. https://doi.org/10.1172/jci.insight.133488
Bell, A. M., Gutierrez-Mecinas, M., Stevenson, A., Casas-Benito, A., Wildner, H., West, S. J., . . . Todd, A. J. (2020). Expression of green fluorescent protein defines a specific population of lamina II excitatory interneurons in the GRP::eGFP mouse. Scientific Reports, 10(1), 13176. doi: 10.1038/s41598-020-69711-7. https://doi.org/10.1038/s41598-020-69711-7
Belmer, A., Patkar, O. L., Lanoue, V., & Bartlett, S. E. (2018). 5-HT1A receptor-dependent modulation of emotional and neurogenic deficits elicited by prolonged consumption of alcohol. Scientific Reports, 8(1), 2099. doi: 10.1038/s41598-018-20504-z. https://doi.org/10.1038/s41598-018-20504-z
Benavides-Piccione, R., Regalado-Reyes, M., Fernaud-Espinosa, I., Kastanauskaite, A., Tapia-González, S., León-Espinosa, G., . . . DeFelipe, J. (2019). Differential Structure of Hippocampal CA1 Pyramidal Neurons in the Human and Mouse. Cerebral Cortex. doi: 10.1093/cercor/bhz122. https://doi.org/10.1093/cercor/bhz122
Benson, C. A., Olson, K.-L., Patwa, S., Reimer, M. L., Bangalore, L., Hill, M., . . . Tan, A. M. (2021). Conditional RAC1 knockout in motor neurons restores H-reflex rate-dependent depression after spinal cord injury. Scientific Reports, 11(1), 7838. doi: 10.1038/s41598-021-87476-5. https://doi.org/10.1038/s41598-021-87476-5
Bocchio, M., Gouny, C., Angulo-Garcia, D., Toulat, T., Tressard, T., Quiroli, E., . . . Cossart, R. (2020). Hippocampal hub neurons maintain distinct connectivity throughout their lifetime. Nature Communications, 11(1), 4559. doi: 10.1038/s41467-020-18432-6. https://doi.org/10.1038/s41467-020-18432-6
Bondy, B. J., Haimes, D. B., & Golding, N. L. (2021). Physiological diversity influences detection of stimulus envelope and fine structure in neurons of the medial superior olive. The Journal of Neuroscience, JN-RM-2354-2320. doi: 10.1523/jneurosci.2354-20.2021. http://www.jneurosci.org/content/early/2021/06/01/JNEUROSCI.2354-20.2021...
Boros, B. D., Greathouse, K. M., Gearing, M., & Herskowitz, J. H. (2018). Dendritic spine remodeling accompanies Alzheimer’s disease pathology and genetic susceptibility in cognitively normal aging. Neurobiology of Aging. doi: https://doi.org/10.1016/j.neurobiolaging.2018.09.003. http://www.sciencedirect.com/science/article/pii/S0197458018303269
Boros, B. D., Greathouse, K. M., Gentry, E. G., Curtis, K. A., Birchall, E. L., Gearing, M., & Herskowitz, J. H. (2017). Dendritic spines provide cognitive resilience against Alzheimer's disease. Annals of Neurology, n/a-n/a. doi: 10.1002/ana.25049. http://dx.doi.org/10.1002/ana.25049
Borreca, A., Valeri, F., De Luca, M., Ernst, L., Russo, A., Nobili, A., . . . Ammassari-Teule, M. (2020). Transient upregulation of translational efficiency in prodromal and early symptomatic Tg2576 mice contributes to Aβ pathology. Neurobiology of Disease, 104787. doi: https://doi.org/10.1016/j.nbd.2020.104787. http://www.sciencedirect.com/science/article/pii/S0969996120300620
Buskila, Y., Bellot-Saez, A., Kékesi, O., Cameron, M., & Morley, J. (2020). Extending the Life Span of Acute Neuronal Tissue for Imaging and Electrophysiological Studies. In N. J. D. Wright (Ed.), Basic Neurobiology Techniques (pp. 235-259). New York, NY: Springer US.
Chaaya, N., Jacques, A., Belmer, A., Richard, D. J., Bartlett, S. E., Battle, A. R., & Johnson, L. R. (2018). Localization of Contextual and Context Removed Auditory Fear Memory within the Basolateral Amygdala Complex. Neuroscience. doi: https://doi.org/10.1016/j.neuroscience.2018.12.004. http://www.sciencedirect.com/science/article/pii/S030645221830798X
Che, A., Babij, R., Iannone, A. F., Fetcho, R. N., Ferrer, M., Liston, C., . . . De Marco García, N. V. (2018). Layer I Interneurons Sharpen Sensory Maps during Neonatal Development. Neuron. doi: https://doi.org/10.1016/j.neuron.2018.06.002. http://www.sciencedirect.com/science/article/pii/S0896627318304707
Chen, C.-K. J., Chen, Y.-J., Shay, A., Weber, N., & Jiang, Z. (2020). Retinal ganglion cells with recombinase activity in mice with engineered Cre in the vGluT3 gene. Investigative Ophthalmology & Visual Science, 61(7), 4522-4522. doi.
Chen, S.-T., Lai, W.-J., Zhang, W.-J., Chen, Q.-P., Zhou, L.-B., So, K.-F., & Shi, L.-L. (2020). Insulin-like growth factor 1 partially rescues early developmental defects caused by SHANK2 knockdown in human neurons. [Research Article]. Neural Regeneration Research, 15(12), 2335-2343. doi: 10.4103/1673-5374.285002. http://www.nrronline.org/article.asp?issn=1673-5374;year=2020;volume=15;...
Chen, X., Xie, C., Tian, W., Sun, L., Wang, Z., Hawes, S., . . . Cai, H. (2020). Parkinson’s disease-related Leucine-rich repeat kinase 2 modulates nuclear morphology and genomic stability in striatal projection neurons during aging. Molecular Neurodegeneration, 15(1), 12. doi: 10.1186/s13024-020-00360-0. https://doi.org/10.1186/s13024-020-00360-0
Collins, D. P., Anastasiades, P. G., Marlin, J. J., & Carter, A. G. (2018). Reciprocal Circuits Linking the Prefrontal Cortex with Dorsal and Ventral Thalamic Nuclei. Neuron. doi: https://doi.org/10.1016/j.neuron.2018.03.024. https://www.sciencedirect.com/science/article/pii/S0896627318302307
Czaniecki, C., Ryan, T., Stykel, M. G., Drolet, J., Heide, J., Hallam, R., . . . Ryan, S. D. (2019). Axonal pathology in hPSC-based models of Parkinson’s disease results from loss of Nrf2 transcriptional activity at the Map1b gene locus. Proceedings of the National Academy of Sciences, 201900576. doi: 10.1073/pnas.1900576116. http://www.pnas.org/content/early/2019/06/21/1900576116.abstract
da Silva, M. P., Moraes, D. J. A., Bonagamba, L. G. H., Mecawi, A. d. S., Varanda, W. A., & Machado, B. H. (2019). Hyperexcitability and plasticity induced by sustained hypoxia on rectus abdominis motoneurons. The Journal of Physiology, 0(ja). doi: doi:10.1113/JP277030. https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/JP277030
Delatour, L. C., Yeh, P. W., & Yeh, H. H. (2018). Ethanol Exposure In Utero Disrupts Radial Migration and Pyramidal Cell Development in the Somatosensory Cortex. Cerebral Cortex, bhy094-bhy094. doi: 10.1093/cercor/bhy094. http://dx.doi.org/10.1093/cercor/bhy094
Delatour, L. C., Yeh, P. W. L., & Yeh, H. H. (2019). Prenatal Exposure to Ethanol Alters Synaptic Activity in Layer V/VI Pyramidal Neurons of the Somatosensory Cortex. Cerebral Cortex. doi: 10.1093/cercor/bhz199. https://doi.org/10.1093/cercor/bhz199
Diaz Vera, D., Soucy, J. R., Lee, A., Koppes, R. A., & Koppes, A. N. (2021). Light irradiation of peripheral nerve cells: Wavelength impacts primary sensory neuron outgrowth in vitro. Journal of Photochemistry and Photobiology B: Biology, 215, 112105. doi: https://doi.org/10.1016/j.jphotobiol.2020.112105. http://www.sciencedirect.com/science/article/pii/S1011134420305558
Dickstein, D. L., Dickstein, D. R., Janssen, W. G. M., Hof, P. R., Glaser, J. R., Rodriguez, A., . . . Tappan, S. J. (2016). Automatic Dendritic Spine Quantification from Confocal Data with Neurolucida 360 Current Protocols in Neuroscience: John Wiley & Sons, Inc.
Dickstein, D. L., Talty, R., Bresnahan, E., Varghese, M., Perry, B., Janssen, W. G. M., . . . Limoli, C. L. (2018). Alterations in synaptic density and myelination in response to exposure to high-energy charged particles. Journal of Comparative Neurology, 0(ja). doi: doi:10.1002/cne.24530. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.24530
Doan, T. P., Lagartos-Donate, M. J., Nilssen, E. S., Ohara, S., & Witter, M. P. (2019). Convergent Projections from Perirhinal and Postrhinal Cortices Suggest a Multisensory Nature of Lateral, but Not Medial, Entorhinal Cortex. Cell Reports, 29(3), 617-627.e617. doi: https://doi.org/10.1016/j.celrep.2019.09.005. http://www.sciencedirect.com/science/article/pii/S2211124719311738
Donega, V., Marcy, G., Lo Giudice, Q., Zweifel, S., Angonin, D., Fiorelli, R., . . . Raineteau, O. (2018). Transcriptional Dysregulation in Postnatal Glutamatergic Progenitors Contributes to Closure of the Cortical Neurogenic Period. Cell Reports, 22(10), 2567-2574. doi: https://doi.org/10.1016/j.celrep.2018.02.030. https://www.sciencedirect.com/science/article/pii/S2211124718301980
El Boukhari, H., Ouhaz, Z., Ba-M'hamed, S., & Bennis, M. (2020). Early lesion of the reticular thalamic nucleus disrupts the structure and function of the mediodorsal thalamus and prefrontal cortex. Developmental Neurobiology, n/a(n/a). doi: 10.1002/dneu.22733. https://onlinelibrary.wiley.com/doi/abs/10.1002/dneu.22733
Erickson, R. P., Aras, S., Purandare, N., Hüttemann, M., Liu, J., Dragotto, J., . . . Grossman, L. I. (2020). Decreased membrane cholesterol in liver mitochondria of the point mutation mouse model of juvenile Niemann–Pick C1, Npc1nmf164. Mitochondrion, 51, 15-21. doi: https://doi.org/10.1016/j.mito.2019.12.003. http://www.sciencedirect.com/science/article/pii/S1567724919300017
Frega, M., Linda, K., Keller, J. M., Gümüş-Akay, G., Mossink, B., van Rhijn, J.-R., . . . Nadif Kasri, N. (2019). Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling. Nature Communications, 10(1), 4928. doi: 10.1038/s41467-019-12947-3. https://doi.org/10.1038/s41467-019-12947-3
Fu, M.-m., McAlear, T. S., Nguyen, H., Oses-Prieto, J. A., Valenzuela, A., Shi, R. D., . . . Barres, B. A. (2019). The Golgi Outpost Protein TPPP Nucleates Microtubules and Is Critical for Myelination. Cell, 179(1), 132-146.e114. doi: https://doi.org/10.1016/j.cell.2019.08.025. http://www.sciencedirect.com/science/article/pii/S0092867419309134
Furuta, T., Bush, N. E., Yang, A. E.-T., Ebara, S., Miyazaki, N., Murata, K., . . . Hartmann, M. J. Z. (2020). The Cellular and Mechanical Basis for Response Characteristics of Identified Primary Afferents in the Rat Vibrissal System. Current Biology. doi: https://doi.org/10.1016/j.cub.2019.12.068. http://www.sciencedirect.com/science/article/pii/S0960982219317014
Gaborieau, E., Hurtado-Chong, A., Fernández, M., Azim, K., & Raineteau, O. (2018). A dual role for the transcription factor Sp8 in postnatal neurogenesis. Scientific Reports, 8(1), 14560. doi: 10.1038/s41598-018-32134-6. https://doi.org/10.1038/s41598-018-32134-6
Gennarino, V. A., Palmer, E. E., McDonell, L. M., Wang, L., Adamski, C. J., Koire, A., . . . Zoghbi, H. Y. (2018). A Mild PUM1 Mutation Is Associated with Adult-Onset Ataxia, whereas Haploinsufficiency Causes Developmental Delay and Seizures. Cell, 172(5), 924-936.e911. doi: https://doi.org/10.1016/j.cell.2018.02.006. http://www.sciencedirect.com/science/article/pii/S0092867418301508
Gisabella, B., Scammell, T., Bandaru, S. S., & Saper, C. B. (2019). Regulation of hippocampal dendritic spines following sleep deprivation. Journal of Comparative Neurology, 0(ja). doi: 10.1002/cne.24764. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.24764
Goodliffe, J. W., Song, H., Rubakovic, A., Chang, W., Medalla, M., Weaver, C. M., & Luebke, J. I. (2018). Differential changes to D1 and D2 medium spiny neurons in the 12-month-old Q175+/- mouse model of Huntington’s Disease. PLOS ONE, 13(8), e0200626. doi: 10.1371/journal.pone.0200626. https://doi.org/10.1371/journal.pone.0200626
Harley, S. B. R., Willis, E. F., Shaikh, S. N., Blackmore, D. G., Sah, P., Ruitenberg, M. J., . . . Vukovic, J. (2021). Selective ablation of BDNF from microglia reveals novel roles in self-renewal and hippocampal neurogenesis. The Journal of Neuroscience, JN-RM-2539-2520. doi: 10.1523/jneurosci.2539-20.2021. http://www.jneurosci.org/content/early/2021/03/22/JNEUROSCI.2539-20.2021...
Hartveit, E., Zandt, B.-J., & Veruki, M. L. (2019). Multiphoton Excitation Microscopy for the Reconstruction and Analysis of Single Neuron Morphology. In E. Hartveit (Ed.), Multiphoton Microscopy (pp. 161-194). New York, NY: Springer New York.
Helton, T. D., Zhao, M., Farris, S., & Dudek, S. M. (2018). Diversity of dendritic morphology and entorhinal cortex synaptic effectiveness in mouse CA2 pyramidal neurons. Hippocampus, 0(ja). doi: doi:10.1002/hipo.23012. https://onlinelibrary.wiley.com/doi/abs/10.1002/hipo.23012
Henderson, B. W., Greathouse, K. M., Ramdas, R., Walker, C. K., Rao, T. C., Bach, S. V., . . . Herskowitz, J. H. (2019). Pharmacologic inhibition of LIMK1 provides dendritic spine resilience against β-amyloid. Science Signaling, 12(587), eaaw9318. doi. https://stke.sciencemag.org/content/12/587/eaaw9318.abstract
Hinova-Palova, D., Kotov, G., Landzhov, B., Edelstein, L., Iliev, A., Stanchev, S., . . . Paloff, A. (2019). Cytoarchitecture of the dorsal claustrum of the cat: a quantitative Golgi study. [journal article]. Journal of Molecular Histology. doi: 10.1007/s10735-019-09839-7. https://doi.org/10.1007/s10735-019-09839-7
Hjorth, J. J. J., Kozlov, A., Carannante, I., Frost Nylén, J., Lindroos, R., Johansson, Y., . . . Grillner, S. (2020). The microcircuits of striatum in silico. Proceedings of the National Academy of Sciences, 117(17), 9554-9565. doi: 10.1073/pnas.2000671117. https://www.pnas.org/content/pnas/117/17/9554.full.pdf
Hoshiba, Y., Toda, T., Ebisu, H., Wakimoto, M., Yanagi, S., & Kawasaki, H. (2016). Sox11 Balances Dendritic Morphogenesis with Neuronal Migration in the Developing Cerebral Cortex. The Journal of Neuroscience, 36(21), 5775-5784. doi.
Jacques, A., Chaaya, N., Hettiarachchi, C., Carmody, M.-L., Beecher, K., Belmer, A., . . . Johnson, L. R. (2019). Microtopography of fear memory consolidation and extinction retrieval within prefrontal cortex and amygdala. [journal article]. Psychopharmacology. doi: 10.1007/s00213-018-5068-4. https://doi.org/10.1007/s00213-018-5068-4
Jeong, J., Pandey, S., Li, Y., Badger, J. D., Lu, W., & Roche, K. W. (2019). PSD-95 binding dynamically regulates NLGN1 trafficking and function. Proceedings of the National Academy of Sciences, 116(24), 12035. doi: 10.1073/pnas.1821775116. http://www.pnas.org/content/116/24/12035.abstract
Jiang, S., Guan, Y., Chen, S., Jia, X., Ni, H., Zhang, Y., . . . Gong, H. (2020). Anatomically revealed morphological patterns of pyramidal neurons in layer 5 of the motor cortex. Scientific Reports, 10(1), 7916. doi: 10.1038/s41598-020-64665-2. https://doi.org/10.1038/s41598-020-64665-2
Kashyap, G., Bapat, D., Das, D., Gowaikar, R., Amritkar, R. E., Rangarajan, G., . . . Ambika, G. (2019). Synapse loss and progress of Alzheimer’s disease -A network model. Scientific Reports, 9(1), 6555. doi: 10.1038/s41598-019-43076-y. https://doi.org/10.1038/s41598-019-43076-y
Kékesi, O., Liang, H., Münch, G., Morley, J. W., Gyengesi, E., & Buskila, Y. (2019). The differential impact of acute microglia activation on the excitability of cholinergic neurons in the mouse medial septum. [journal article]. Brain Structure and Function. doi: 10.1007/s00429-019-01905-w. https://doi.org/10.1007/s00429-019-01905-w
Kiyama, T., Long, Y., Chen, C.-K., Whitaker, C. M., Shay, A., Wu, H., . . . Mao, C.-A. (2019). Essential Roles of Tbr1 in the Formation and Maintenance of the Orientation-Selective J-RGCs and a Group of OFF-Sustained RGCs in Mouse. Cell Reports, 27(3), 900-915.e905. doi: https://doi.org/10.1016/j.celrep.2019.03.077. http://www.sciencedirect.com/science/article/pii/S2211124719304164
Kobayashi, C., Okamoto, K., Mochizuki, Y., Urakubo, H., Funayama, K., Ishikawa, T., . . . Ikegaya, Y. (2018). GABAergic inhibition reduces the impact of synaptic excitation on somatic excitation. Neuroscience Research. doi: https://doi.org/10.1016/j.neures.2018.09.014. http://www.sciencedirect.com/science/article/pii/S0168010218302281
Koeppen, J., Nguyen, A. Q., Nikolakopoulou, A. M., Garcia, M., Hanna, S., Woodruff, S., . . . Ethell, I. M. (2018). Functional consequences of synapse remodeling following astrocyte-specific regulation of ephrin-B1 in the adult hippocampus. [10.1523/JNEUROSCI.3618-17.2018]. The Journal of Neuroscience. doi. http://www.jneurosci.org/content/early/2018/05/23/JNEUROSCI.3618-17.2018...
Kovaleski, R. F., Callahan, J. W., Chazalon, M., Wokosin, D. L., Baufreton, J., & Bevan, M. D. (2020). Dysregulation of external globus pallidus-subthalamic nucleus network dynamics in parkinsonian mice during cortical slow-wave activity and activation. The Journal of Physiology, n/a(n/a). doi: 10.1113/jp279232. https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/JP279232
Kuddannaya, S., Tong, C. S., Fan, Y., & Zhang, Y. (2018). Geometrically Mediated Topographic Steering of Neurite Behaviors and Network Formation. Advanced Materials Interfaces, 1700819-n/a. doi: 10.1002/admi.201700819. http://dx.doi.org/10.1002/admi.201700819
Lee, D., Hyun, J. H., Jung, K., Hannan, P., & Kwon, H.-B. (2017). A calcium- and light-gated switch to induce gene expression in activated neurons. [Research]. Nat Biotech, advance online publication. doi: 10.1038/nbt.3902
http://www.nature.com/nbt/journal/vaop/ncurrent/abs/nbt.3902.html#supple.... http://dx.doi.org/10.1038/nbt.3902
Lee, S.-h., Jaejin, S., & Chang, M.-y. (2019). Transplantation effect of dopamine neuron engraftment by co-transplantation of midbrain astrocytes and vm-npcs: Google Patents.
Lellouche, Y., Minert, A., Schreiber, C., Aroch, I., Vaso, K., Fishman, Y., & Devor, M. (2020). Individual Mesopontine Neurons Implicated in Anesthetic Loss-of-consciousness Employ Separate Ascending Pathways to the Cerebral Cortex. Neuroscience. doi: https://doi.org/10.1016/j.neuroscience.2020.02.022. http://www.sciencedirect.com/science/article/pii/S0306452220301081
Lesicko, A. M. H., Sons, S. K., & Llano, D. A. (2020). Circuit mechanisms underlying the segregation and integration of parallel processing streams in the inferior colliculus. The Journal of Neuroscience, JN-RM-0646-0620. doi: 10.1523/jneurosci.0646-20.2020. https://www.jneurosci.org/content/jneuro/early/2020/07/14/JNEUROSCI.0646...
Li, Y., Missig, G., Finger, B. C., Landino, S. M., Alexander, A. J., Mokler, E., . . . Bolshakov, V. Y. (2018). Maternal and Early Postnatal Immune Activation Produce Dissociable Effects on Neurotransmission in mPFC-Amygdala Circuits. [10.1523/JNEUROSCI.3642-17.2018]. The Journal of Neuroscience. doi. http://www.jneurosci.org/content/early/2018/02/28/JNEUROSCI.3642-17.2018...
Linske, M. (2019). Use of 3D Neuronal Reconstructions for Carrying out Morphological Analyses. doi. https://dc.uwm.edu/uwsurca/2019/Posters/98/
Lu, H.-C., Tan, Q., Rousseaux, M. W. C., Wang, W., Kim, J.-Y., Richman, R., . . . Zoghbi, H. Y. (2017). Disruption of the ATXN1-CIC complex causes a spectrum of neurobehavioral phenotypes in mice and humans. [Article]. Nat Genet, advance online publication. doi: 10.1038/ng.3808
http://www.nature.com/ng/journal/vaop/ncurrent/abs/ng.3808.html#suppleme.... http://dx.doi.org/10.1038/ng.3808
Maier, E., Lauer, S. M., & Brecht, M. (2020). Conserved layer 4 organization and respiration locking in the rodent nose somatosensory cortex. Journal of Neurophysiology. doi: 10.1152/jn.00138.2020. https://doi.org/10.1152/jn.00138.2020
Marquié, M., Agüero, C., Amaral, A. C., Villarejo-Galende, A., Ramanan, P., Chong, M. S. T., . . . Gómez-Isla, T. (2019). [18F]-AV-1451 binding profile in chronic traumatic encephalopathy: a postmortem case series. [journal article]. Acta Neuropathologica Communications, 7(1), 164. doi: 10.1186/s40478-019-0808-1. https://doi.org/10.1186/s40478-019-0808-1
Matovic, S., Ichiyama, A., Igarashi, H., Salter, E. W., Sunstrum, J. K., Wang, X. F., . . . Inoue, W. (2020). Neuronal hypertrophy dampens neuronal intrinsic excitability and stress responsiveness during chronic stress. The Journal of Physiology, n/a(n/a). doi: 10.1113/jp279666. https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/JP279666
McClendon, E., Wang, K., Degener, O., Brien, K., Hagen, M. W., Gong, X., . . . Back, S. A. (2019). Transient Hypoxemia Disrupts Anatomical and Functional Maturation of Preterm Fetal Ovine CA1 Pyramidal Neurons. The Journal of Neuroscience, 1364-1319. doi: 10.1523/jneurosci.1364-19.2019. http://www.jneurosci.org/content/early/2019/08/27/JNEUROSCI.1364-19.2019...
McLaurin, K. A., Li, H., Booze, R. M., Fairchild, A. J., & Mactutus, C. F. (2018). Unraveling Individual Differences In The HIV-1 Transgenic Rat: Therapeutic Efficacy Of Methylphenidate. Scientific Reports, 8(1), 136. doi: 10.1038/s41598-017-18300-2. https://doi.org/10.1038/s41598-017-18300-2
McLaurin, K. A., Li, H., Booze, R. M., & Mactutus, C. F. (2019). Disruption of Timing: NeuroHIV Progression in the Post-cART Era. Scientific Reports, 9(1), 827. doi: 10.1038/s41598-018-36822-1. https://doi.org/10.1038/s41598-018-36822-1
Meredith, M. A., Keniston, L. P., Prickett, E. H., Bajwa, M., Cojanu, A., Clemo, H. R., & Allman, B. L. (2020). What is a multisensory cortex? A laminar, connectional, and functional study of a ferret temporal cortical multisensory area. Journal of Comparative Neurology, n/a(n/a). doi: 10.1002/cne.24859. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.24859
Michaelson, S. D., Ozkan, E. D., Aceti, M., Maity, S., Llamosas, N., Weldon, M., . . . Rumbaugh, G. (2018). SYNGAP1 heterozygosity disrupts sensory processing by reducing touch-related activity within somatosensory cortex circuits. Nature Neuroscience, 21(12), 1-13. doi: 10.1038/s41593-018-0268-0. https://doi.org/10.1038/s41593-018-0268-0
Motley, S. E., Grossman, Y., Janssen, W. G. M., Baxter, M. G., Rapp, P. R., Dumitriu, D., & Morrison, J. H. (2018). Selective loss of thin spines in area 7a of the primate intraparietal sulcus predicts age-related working memory impairment. [10.1523/JNEUROSCI.1234-18.2018]. The Journal of Neuroscience. doi. http://www.jneurosci.org/content/early/2018/10/24/JNEUROSCI.1234-18.2018...
Nagahama, K., Fujino, S., Watanabe, T., Uesaka, N., & Kano, M. (2021). Combining electrophysiology and optogenetics for functional screening of pyramidal neurons in the mouse prefrontal cortex. STAR Protocols, 2(2), 100469. doi: https://doi.org/10.1016/j.xpro.2021.100469. https://www.sciencedirect.com/science/article/pii/S2666166721001763
Nakajima, K., Miranda, A., Craig, D. W., Shekhtman, T., Kmoch, S., Bleyer, A., . . . Kelsoe, J. R. (2020). Ntrk1 mutation co-segregating with bipolar disorder and inherited kidney disease in a multiplex family causes defects in neuronal growth and depression-like behavior in mice. Translational Psychiatry, 10(1), 407. doi: 10.1038/s41398-020-01087-8. https://doi.org/10.1038/s41398-020-01087-8
Nash, B., Festa, L., Lin, C., & Meucci, O. (2019). Opioid and chemokine regulation of cortical synaptodendritic damage in HIV-associated neurocognitive disorders. Brain Research, 1723, 146409. doi: https://doi.org/10.1016/j.brainres.2019.146409. http://www.sciencedirect.com/science/article/pii/S0006899319304639
Nasrallah, K., Therreau, L., Robert, V., Huang, A. J. Y., McHugh, T. J., Piskorowski, R. A., & Chevaleyre, V. (2019). Routing Hippocampal Information Flow through Parvalbumin Interneuron Plasticity in Area CA2. Cell Reports, 27(1), 86-98.e83. doi: https://doi.org/10.1016/j.celrep.2019.03.014. http://www.sciencedirect.com/science/article/pii/S2211124719303213
Nedelescu, H. (2018). Brain architecture at varying scales. Journal of Neuroscience Research, 96(9), 1447-1449. doi: doi:10.1002/jnr.24272. https://onlinelibrary.wiley.com/doi/abs/10.1002/jnr.24272
Nedelescu, H., Abdelhack, M., & Pritchard, A. T. (2018). Regional differences in Purkinje cell morphology in the cerebellar vermis of male mice. Journal of Neuroscience Research, n/a-n/a. doi: 10.1002/jnr.24206. http://dx.doi.org/10.1002/jnr.24206
Nestor, J., Arinuma, Y., Huerta, T. S., Kowal, C., Nasiri, E., Kello, N., . . . Diamond, B. (2018). Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors. [10.1084/jem.20180776]. The Journal of Experimental Medicine. doi. http://jem.rupress.org/content/early/2018/09/04/jem.20180776.abstract
Noakes, Z., Keefe, F., Tamburini, C., Kelly, C. M., Cruz Santos, M., Dunnett, S. B., . . . Li, M. (2019). Human Pluripotent Stem Cell-Derived Striatal Interneurons: Differentiation and Maturation In Vitro and in the Rat Brain. Stem Cell Reports. doi: https://doi.org/10.1016/j.stemcr.2018.12.014. http://www.sciencedirect.com/science/article/pii/S2213671118305332
Osipovitch, M., Asenjo Martinez, A., Mariani, J. N., Cornwell, A., Dhaliwal, S., Zou, L., . . . Goldman, S. A. (2018). Human ESC-Derived Chimeric Mouse Models of Huntington’s Disease Reveal Cell-Intrinsic Defects in Glial Progenitor Cell Differentiation. Cell Stem Cell. doi: https://doi.org/10.1016/j.stem.2018.11.010. http://www.sciencedirect.com/science/article/pii/S1934590918305460
Panja, D., Li, Y., Ward, M. E., & Li, Z. (2021). miR-936 is Increased in Schizophrenia and Inhibits Neural Development and AMPA Receptor-Mediated Synaptic Transmission. Schizophrenia Bulletin, (sbab046). doi: 10.1093/schbul/sbab046. https://doi.org/10.1093/schbul/sbab046
Paulina Urban, V. R. T., Michał Denkiewicz, Grzegorz Bokota, Nirmal Das, Subhadip Basu, and Dariusz Plewczynski. (2020). The Mixture of Autoregressive Hidden Markov Models of Morphology for Dentritic Spines During Activation Process. Journal of Computational Biology, 0(0), null. doi: 10.1089/cmb.2019.0383. https://www.liebertpub.com/doi/abs/10.1089/cmb.2019.0383
Pereira, L. d. S., Gobbo, D. R., Ferreira, J. G. P., Horta-Junior, J. d. A. d. C. e., Sá, S. I., & Bittencourt, J. C. (2020). Effects of ovariectomy on inputs from the medial preoptic area to the ventromedial nucleus of the hypothalamus of young adult rats. Journal of Anatomy, n/a(n/a). doi: 10.1111/joa.13304. https://doi.org/10.1111/joa.13304
Piard, J., Hu, J.-H., Campeau, P. M., Rzońca, S., Van Esch, H., Vincent, E., . . . Worley, P. F. (2017). FRMPD4 mutations cause X-linked intellectual disability and disrupt dendritic spine morphogenesis. Human Molecular Genetics, ddx426-ddx426. doi: 10.1093/hmg/ddx426. http://dx.doi.org/10.1093/hmg/ddx426
Poppe, L., Rué, L., Timmers, M., Lenaerts, A., Storm, A., Callaerts-Vegh, Z., . . . Lemmens, R. (2019). EphA4 loss improves social memory performance and alters dendritic spine morphology without changes in amyloid pathology in a mouse model of Alzheimer’s disease. Alzheimer's Research & Therapy, 11(1), 102. doi: 10.1186/s13195-019-0554-4. https://doi.org/10.1186/s13195-019-0554-4
Putatunda, R., Zhang, Y., Li, F., Yang, X.-F., Barbe, M. F., & Hu, W. (2018). Adult neurogenic deficits in HIV-1 Tg26 transgenic mice. [journal article]. Journal of Neuroinflammation, 15(1), 287. doi: 10.1186/s12974-018-1322-2. https://doi.org/10.1186/s12974-018-1322-2
Quinlan, K. A., Reedich, E., Arnold, W. D., Puritz, A., Cavarsan, C. F., Heckman, C., & DiDonato, C. J. (2019). Hyperexcitability precedes motoneuron loss in the Smn2B/- mouse model of spinal muscular atrophy. Journal of Neurophysiology, 0(0), null. doi: 10.1152/jn.00652.2018. https://www.physiology.org/doi/abs/10.1152/jn.00652.2018
Rios-Pilier, J., & Krimm, R. F. (2019). TrkB expression and dependence divides gustatory neurons into three subpopulations. [journal article]. Neural Development, 14(1), 3. doi: 10.1186/s13064-019-0127-z. https://doi.org/10.1186/s13064-019-0127-z
Rühling, S., Kramer, F., Schmutz, S., Amor, S., Jiangshan, Z., Schmitz, C., . . . Hochstrasser, T. (2018). Visualization of the Breakdown of the Axonal Transport Machinery: a Comparative Ultrastructural and Immunohistochemical Approach. [journal article]. Molecular Neurobiology. doi: 10.1007/s12035-018-1353-9. https://doi.org/10.1007/s12035-018-1353-9
Schmeichel, A. M., Gehrking, J. A., Minota, K., Low, P. A., Singer, W., & Mandrekar, J. N. (2019). Refined Quantitation of Sweat Gland Innervation. doi: 10.1093/jnen/nlz015. https://doi.org/10.1093/jnen/nlz015
Shahriar, S., Brian, M., Jared, C., Sommer, A., Sami, Z., Julio, G., . . . C., S. J. (2018). Morphometric analysis of astrocytes in brainstem respiratory regions. Journal of Comparative Neurology, 0(ja). doi: doi:10.1002/cne.24472. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.24472
Skelton, P. D., Poquerusse, J., Salinaro, J. R., Li, M., & Luikart, B. W. (2020). Activity-dependent dendritic elaboration requires Pten. Neurobiology of Disease, 134, 104703. doi: https://doi.org/10.1016/j.nbd.2019.104703. http://www.sciencedirect.com/science/article/pii/S096999611930378X
Stedehouder, J., Couey, J., Brizee, D., Hosseini, B., Slotman, J., Dirven, C., . . . Kushner, S. (2017). Fast-spiking Parvalbumin Interneurons are Frequently Myelinated in the Cerebral Cortex of Mice and Humans. Cerebral Cortex, 1-13. doi. https://academic.oup.com/cercor/article/doi/10.1093/cercor/bhx203/407981...
Subramanian, J., Michel, K., Benoit, M., & Nedivi, E. (2019). CPG15/Neuritin Mimics Experience in Selecting Excitatory Synapses for Stabilization by Facilitating PSD95 Recruitment. Cell Reports, 28(6), 1584-1595.e1585. doi: https://doi.org/10.1016/j.celrep.2019.07.012. http://www.sciencedirect.com/science/article/pii/S2211124719309027
Tai, Y., Gallo, N. B., Wang, M., Yu, J.-R., & Van Aelst, L. (2019). Axo-axonic Innervation of Neocortical Pyramidal Neurons by GABAergic Chandelier Cells Requires AnkyrinG-Associated L1CAM. Neuron. doi: https://doi.org/10.1016/j.neuron.2019.02.009. http://www.sciencedirect.com/science/article/pii/S0896627319301187
Tong, D., Godale, C. M., Kadakia, F. K., Gu, Z., Danzer, C. S. K., Alghamdi, A., . . . Danzer, S. C. (2019). Immature murine hippocampal neurones do not develop long-term structural changes after a single isoflurane exposure. British Journal of Anaesthesia. doi: https://doi.org/10.1016/j.bja.2019.08.019. http://www.sciencedirect.com/science/article/pii/S000709121930649X
Ullah, F., Asgarov, R., Venigalla, M., Liang, H., Niedermayer, G., Münch, G., & Gyengesi, E. (2020). Effects of a solid lipid curcumin particle formulation on chronic activation of microglia and astroglia in the GFAP-IL6 mouse model. Scientific Reports, 10(1), 2365. doi: 10.1038/s41598-020-58838-2. https://doi.org/10.1038/s41598-020-58838-2
Viar, K., Njoku, D., Secor McVoy, J., & Oh, U. (2020). Sarm1 knockout protects against early but not late axonal degeneration in experimental allergic encephalomyelitis. PLOS ONE, 15(6), e0235110. doi: 10.1371/journal.pone.0235110. https://doi.org/10.1371/journal.pone.0235110
Walker, C. K., Greathouse, K. M., Boros, B. D., Poovey, E. H., Clearman, K. R., Ramdas, R., . . . Herskowitz, J. H. (2020). Dendritic Spine Remodeling and Synaptic Tau Levels in PS19 Tauopathy Mice. Neuroscience. doi: https://doi.org/10.1016/j.neuroscience.2020.12.006. http://www.sciencedirect.com/science/article/pii/S0306452220307764
Wang, L., Challis, C., Li, S., Fowlkes, C. C., Ravindra Kumar, S., Yuan, P.-Q., & Taché, Y. F. (2020). Multicolor sparse viral labeling and 3D digital tracing of enteric plexus in mouse proximal colon using a novel adeno-associated virus capsid. [https://doi.org/10.1111/nmo.14014]. Neurogastroenterology & Motility, n/a(n/a), e14014. doi: https://doi.org/10.1111/nmo.14014. https://doi.org/10.1111/nmo.14014
Wang, L., Pang, K., Han, K., Adamski, C. J., Wang, W., He, L., . . . Zoghbi, H. Y. (2019). An autism-linked missense mutation in SHANK3 reveals the modularity of Shank3 function. Molecular Psychiatry. doi: 10.1038/s41380-018-0324-x. https://doi.org/10.1038/s41380-018-0324-x
Whyland, K. L., Slusarczyk, A. S., & Bickford, M. E. (2019). GABAergic cell types in the superficial layers of the mouse superior colliculus. Journal of Comparative Neurology, 0(0). doi: 10.1002/cne.24754. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.24754
Wu, F., Han, B., Wu, S., Yang, L., Leng, S., Li, M., . . . Yao, H. (2019). Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335-3p/TIPARP. The Journal of Neuroscience, 0299-0219. doi: 10.1523/jneurosci.0299-19.2019. http://www.jneurosci.org/content/early/2019/07/16/JNEUROSCI.0299-19.2019...
Wu, P.-z., O’Malley, J. T., de Gruttola, V., & Liberman, M. C. (2021). Primary Neural Degeneration in Noise-Exposed Human Cochleas: Correlations with Outer Hair Cell Loss and Word-Discrimination Scores. The Journal of Neuroscience, JN-RM-3238-3220. doi: 10.1523/jneurosci.3238-20.2021. http://www.jneurosci.org/content/early/2021/04/19/JNEUROSCI.3238-20.2021...
Xiao, X., Djurisic, M., Hoogi, A., Sapp, R. W., Shatz, C. J., & Rubin, D. L. (2018). Automated dendritic spine detection using convolutional neural networks on maximum intensity projected microscopic volumes. Journal of Neuroscience Methods, 309, 25-34. doi: https://doi.org/10.1016/j.jneumeth.2018.08.019. http://www.sciencedirect.com/science/article/pii/S0165027018302553
Yousuf, H., Nye, A. N., & James R Moyer, J. (2020). Heterogeneity of Neuronal Firing Type and Morphology in Retrosplenial Cortex of Male F344 Rats. Journal of Neurophysiology, 0(0), null. doi: 10.1152/jn.00577.2019. https://journals.physiology.org/doi/abs/10.1152/jn.00577.2019
Zandt, B.-J., Losnegård, A., Hodneland, E., Veruki, M. L., Lundervold, A., & Hartveit, E. (2017). Semi-automatic 3D morphological reconstruction of neurons with densely branching morphology: application to retinal AII amacrine cells imaged with multi-photon excitation microscopy. Journal of Neuroscience Methods. doi: http://dx.doi.org/10.1016/j.jneumeth.2017.01.008. //www.sciencedirect.com/science/article/pii/S0165027017300080
Zhan, J., Fegg, F. N., Kaddatz, H., Rühling, S., Frenz, J., Denecke, B., . . . Kipp, M. (2021). Focal white matter lesions induce long-lasting axonal degeneration, neuroinflammation and behavioral deficits. Neurobiology of Disease, 155, 105371. doi: https://doi.org/10.1016/j.nbd.2021.105371. https://www.sciencedirect.com/science/article/pii/S0969996121001200
Zhang, X., Schlögl, A., & Jonas, P. (2020). Selective Routing of Spatial Information Flow from Input to Output in Hippocampal Granule Cells. Neuron. doi: https://doi.org/10.1016/j.neuron.2020.07.006. http://www.sciencedirect.com/science/article/pii/S0896627320305237
Zhang, Y., Du, L., Bai, Y., Han, B., He, C., Gong, L., . . . Yao, H. (2018). CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Molecular Psychiatry. doi: 10.1038/s41380-018-0285-0. https://doi.org/10.1038/s41380-018-0285-0
Zweifel, S., Buquet, J., Caruso, L., Rousseau, D., & Raineteau, O. (2018). “FlashMap” - A Semi-Automatic Tool for Rapid and Accurate Spatial Analysis of Marker Expression in the Subventricular Zone. Scientific Reports, 8(1), 16086. doi: 10.1038/s41598-018-33939-1. https://doi.org/10.1038/s41598-018-33939-1
Download our product sheet here.
Neurolucida 360 is uniquely designed to automatically model, classify and quantify dendritic spines in 3D. Spines can be automatically classified by type (i.e., mushroom, filipodia, stubby, thin as described in the scientific literature).
Puncta detection in the 3D environment allows you to detect anything from cells to subcellular structures synapses, proteins and mRNA. This feature includes the ability to utilize machine learning to generate more accurate reconstructions. The machine learning detection mechanism employs specific models of object size and appearance (e.g. for puncta, cell nuclei) that accept or reject locations in your image that meet general detection parameters. Only objects that meet the requirements of the specialized machine learning model are further considered for detection and reconstruction, leading to a more accurate selection of puncta of interest.
As you work with increasingly bigger and more complex image data, Neurolucida 360’s high performance 3D visualization can scale with your data needs and serve as an indispensable tool for effective data interpretation. The highly versatile 3D visualization environment is suitable to work with most microscopy images with state-of-the-art functionalities to support your analysis and publication needs. Working with large 3D image data, for example from light sheet microscopes is facilitated with innovative subvolume viewing.
Neurolucida 360 has been used to reconstruct the morphology of thousands of neuron types including pyramidal, chandelier, and projection neurons. With a suite of advanced algorithms and tools, you can accurately model and quantify axons, dendrites, somas, dendritic spines, synapses, varicosities, puncta, and anatomical regions. Whether you’re working with 2D or 3D image data from two-photon, light sheet, confocal, or brightfield microscopy our tools are engineered to support you and your data.
We support open science through the practice of data openness, integrity, and reproducibility. MBF Bioscience’s published digital reconstruction data file format, the Neuromorphological File Specification (NFS), is endorsed as a standard by the INCF.
The data elements in this NFS format were specifically implemented to ensure the files are Findable, Accessible, Interoperable, and Reusable (FAIR). Abiding by these data standards and providing microscopy image and experimental data provenance enhances the ease of repurposing this data. Encoded in the well-recognized and readable XML format, the modeling elements specify microscopic neuroanatomies in a calibrated 3D coordinate system with appropriate units. To learn more about the key elements of the file format and their relevant structural advantages, view our manuscript.
With Neurolucida 360’s full suite of tools you can manually trace and edit your reconstructions, creating a ground-truth representation of your neuron data.
You can also fine-tune and correct the automatic reconstructions in cases of particularly challenging image data. Some of the edit functions available are:
Explore a variety of data that demonstrates the models you can create using MBF Bioscience image analysis software (e.g. Neurolucida® 360). Interact with these data files over the web and examine the full resolution, 3D morphological models generated from microscopy images.
Our three most popular packages are Neurolucida 360 Lite, Essentials, and Studio.
There are different options to set up Neurolucida 360 in your lab: a one-time upfront cost for the software, an annual subscription plan, mobile licenses to move Neurolucida 360 from one computer to another, and more.
Feature Description |
Neurolucida 360 |
Neurolucida 360 ESSENTIALS |
Neurolucida 360 STUDIO (BEST VALUE) |
|
---|---|---|---|---|
User-guided tree tracing | ||||
Smart manual tree tracing | ||||
User-guided soma detection | ||||
Set specified color channels for analyses | ||||
3D editing | ||||
Create and share movies | ||||
Professional technical support | ||||
Open and FAIR file format | ||||
Big image data capability: Batch image filters | ||||
Big image data capability: Sub-volume tool | ||||
Big image data capability: Dense area visualization tool | ||||
Big image data capability: Dense area automatic tracing | ||||
Automatic tree tracing | ||||
Batch mode | ||||
Automatic soma detection | ||||
Image montaging | ||||
Automatic puncta detection, including synapses | ||||
Automatic puncta detection, with machine learning | ||||
Automatic spine detection and classification | ||||
Automatic trace evaluation |
Neurolucida 360 is used across the globe by the most prestigious laboratories.
Neuroluicda 360’s utility is underscored by the number of references it receives in the worlds most important scientific publications. See examples below:
Farid, H., W. B. Gelford, et al.
“Fast Blue and Cholera Toxin-B Survival Guide for Alpha-Motoneurons Labeling: Less Is Better in Young B6SJL Mice, but More Is Better in Aged C57Bl/J Mice.” BioengineeringView Publication
Joy, M. T., S. P. Bridges, et al.
Quantitative Spatial Mapping of Axons Across Cortical Regions to Assess Axonal Sprouting After Stroke. Neural Repair: Methods and Protocols.View Publication
Galbiati, M., M. Meroni, et al.
“Bicalutamide and Trehalose Ameliorate Spinal and Bulbar Muscular Atrophy Pathology in Mice.” Neurotherapeutics.View Publication
Plachez, C., V. Tsytsarev, et al.
“Amyloid deposition and dendritic complexity of corticocortical projection cells in 5xFAD mouse.” NeuroscienceView Publication
Freire-Cobo, C., E. S. Rothwell, et al.
“Neuronal vulnerability to brain aging and neurodegeneration in cognitively impaired marmoset monkeys (Callithrix jacchus).” Neurobiology of AgingView Publication
Sun, J., S. Osenberg, et al.
“Mutations in the transcriptional regulator MeCP2 severely impact key cellular and molecular signatures of human astrocytes during maturation.” Cell ReportsView Publication
Steffen, D. M., C. M. Hanes, et al.
“A unique role for Protocadherin γC3 in promoting dendrite arborization through an Axin1-dependent mechanism.” The Journal of NeuroscienceView Publication
Sharma, D. R., B. Cheng, et al.
“Elevated insulin growth factor-1 in dentate gyrus induces cognitive deficits in pre-term newborns.” Cerebral CortexView Publication
Jaffey, D. M., J. McAdams, et al.
“Vagal Preganglionic Axons Arborize in the Myenteric Plexus into Two Types: Nitrergic and Non-nitrergic Postganglionic Motor Pools?” American Journal of Physiology-Regulatory, Integrative and Comparative PhysiologyView Publication
To fit your scientific and budgetary needs, we have three popular packages of Neurolucida 360 available for purchase: Lite, Essentials, and Studio.
There are even different options to set up any of the above Neurolucida 360 packages in your lab, including: annual subscription plans, mobile licenses to move Neurolucida 360 from one computer to another, and more.
Our software supports almost all microscopy image file formats generated from a variety of microscopy vendors (CZI, TIF, JPX, LIF, and more). See the comprehensive list here.
Want to convert your file format to standardized formats, JPEG2000 (.jpx/.jp2) and/or OME-TIFF? Try our free tool, MicroFile+, which uses state-of-the-art compression methods to efficiently and accurately convert 2D and 3D images from most sources into manageable and metadata-enriched format(s).
With the included companion analysis Neurolucida Explorer software, you can perform detailed morphometric analyses of your Neurolucida 360 reconstructions. Automatically obtain quantitative data from a plethora of morphological, spatial (e.g. Sholl Analysis), and orientation analyses. In addition to the sophisticated and comprehensive generation of quantitative data, Neurolucida Explorer also shows many graphical displays that allow you to visualize the quantitative data in intuitive ways – and generate figures for publications and presentations.
Neurolucida 360 can automatically reconstruct neurons from images and image stacks acquired by a variety of microscopy types – whereas Neurolucida – Microscope Edition enables manual reconstruction of neurons from tissue specimens directly from a research microscope.
Yes! Our Neurolucida 360 Studio package has sophisticated batch tracing tools for detecting somas, trees, varicosities, spines, and puncta across multiple files.
To further expedite your data throughput, you can also apply image filters in batch and employ batch analysis features with Neurolucida Explorer.
Yes, you can create dynamic, high-resolution MP4 videos of your tracing and image data in Neurolucida 360’s intuitive 3D environment.
All MBF Bioscience software comes with comprehensive, context-sensitive help guides accessible online or offline. Further, reduce the initial learning curve with our online learning center for how-to videos, quick guide PDFs, and product-specific webinars.
Neurolucida 360 excels at handling multi-resolution image data from a wide range of tissue preparations (e.g., serial sectioned, cleared), microscopy modalities (e.g., confocal, light sheet, expansion microscopy). Depending on your reconstruction and analysis goals, our team of experts can help you refine imaging parameters for optimal performance in Neurolucida 360. Contact us today.
Additionally, our scientists collaborated with researchers from the Icahn School of Medicine at Mount Sinai in New York to develop a set of guidelines on preparing and imaging confocal image data for Neurolucida 360. The guidelines, published in Current Protocols in Neuroscience, will help you get the best results for spine quantification and neuron reconstruction.
"I am amazed at the speed and accuracy of Neurolucida 360. The automatic tracing program is intuitive and easy to use."
Gwen Wendelschafer-Crabb, Ph.D.
Neurolucida 360 is very useful for doing quantitative analysis of neuronal morphology.
Yun Wang, Ph.D.
"Neurolucida 360 is the future of quantitative neuromorphology. I am particularly excited about Neurolucida 360's interactive function because it will allow for much more efficient tracing of Golgi stained neurons, which are notoriously difficult to quantify. Cajal would be proud!"
Bob Jacobs, Ph.D.
"Neurolucida 360 is a remarkable system that has provided us with tools to study dendritic architecture in cultured neurons, rodent models, and humans, with outstanding precision and detail."
Jeremy Herskowitz, Ph.D.
"Neurolucida 360 is clearly the best in the field - reliable, accurate, and very importantly, easy and intuitive to use. I would not try any other system."
Jeffrey Kordower, Ph.D.
"I rarely have encountered a company so committed to support and troubleshooting as MBF."
Andrew Hardaway, Ph.D.
Our service sets us apart, with a team that includes Ph.D. neuroscientists, experts in microscopy, stereology, neuron reconstruction, and image processing. We’ve also developed a host of additional support services, including:
We offer both a free expert demonstration and a free trial copy of Neurolucida 360. During your demonstration you’ll have the opportunity to discuss your hardware, software, or experimental design questions with our team of Ph.D. neuroscientists and experts in microscopy, neuron tracing, and image processing.
During your free trial, use the tips and suggestions from a free, expert evaluation and find out how easy Neurolucida 360 is to use and how quickly you can obtain useful data.
Neuron tracing & analysis directly at the microscope. The gold standard for neuron tracing.
The analytical software companion for Neurolucida and Neurolucida 360 designed to perform extensive morphometric analysis.