The most advanced software for automatic 3D neuron reconstruction
MBF Bioscience > Neurolucida®360

Product Overview

Neurolucida 360 is the premier tool used by neuroscientists to quickly and accurately reconstruct any neuron of any species from a variety of labeling and microscopy techniques. Machine learning, coupled with the most advanced 3D image detection algorithms, perform accurate reconstruction of neuronal structures that range in scale from complex, multicellular networks of neurons, to sub-cellular components such as dendritic spines, varicosities and putative synapses.


Neurolucida 360 is engineered to work efficiently with even the largest 3D multi-channel datasets using intelligent precognitive image handling.

Play Video

Key Benefits

Neurolucida 360: The leading image analysis software for automatic 3D neuron reconstruction and quantitative morphology

Neurolucida 360 is the most trusted software for comprehensive neuron reconstruction. Built by neuroscientists for neuroscientists, Neurolucida 360 is equipped with powerful automated algorithms for detection of neuronal structures present in 2D and 3D microscopy image data.

With built-in workflows, an intuitive user-interface, and interactive 3D environment, Neurolucida 360 makes it easy to reconstruct somas, axons, dendrites, varicosities, spines, and synapses.

Paired with the companion software, Neurolucida Explorer, you can quickly and effectively analyze the morphology of subcellular structures, whole cells, or complex connective networks – from any species.

Neurolucida 360 has been developed with support from the National Institute of Mental Health (NIMH)

Minimum System Requirements

Operating System

Windows 10, 64-bit




16 GB


>6 GB


Recommended System Requirements

Operating System

Windows 10, 64-bit




64 GB


>8 GB


Solid state drive(s)


Input Specifications

Supported image file formats



Output Specifications

Model data output formats



* Our XML data file format, the Neuromorphological File Specification (NFS), was recently endorsed as a standard by the INCF.

Image file output formats


Movie export format


Case Study: MIT, Janelia Research Campus and Harvard Medical School
Novel dendritic spine analysis using Expansion Microscopy and Light Sheet Microscopy
>> Learn More

Case Study: Allen Institute for Brain Science and University of Szeged
Scientists Discover New “Rosehip” Neuron in Human Brain
>> Learn More

Case Study: Western Sydney University
Curcumin Lowers Neuroinflammation in Mouse Model
>> Learn More

Case Study: University of Alabama
Researchers Identify Potential Treatment for Patients at Risk for Alzheimer’s Disease
>> Learn More

Case Study: Stanford University
Scientists Render Mouse Brain Transparent, Offering New Possibilities For 3D Analysis
>> Learn More

Joy, M. T., S. P. Bridges, et al. (2023). Quantitative Spatial Mapping of Axons Across Cortical Regions to Assess Axonal Sprouting After Stroke. Neural Repair: Methods and Protocols. V. T. Karamyan and A. M. Stowe. New York, NY, Springer US: 171-180.

Farid, H., W. B. Gelford, et al. (2023). "Fast Blue and Cholera Toxin-B Survival Guide for Alpha-Motoneurons Labeling: Less Is Better in Young B6SJL Mice, but More Is Better in Aged C57Bl/J Mice." Bioengineering 10(2): 141.

Gómez-Oliva, R., S. Martínez-Ortega, et al. (2023). "Rescue of neurogenesis and age-associated cognitive decline in SAMP8 mouse: role of transforming growth factor alpha." bioRxiv: 2023.2001.2014.524036.

Sharma, D. R., B. Cheng, et al. (2023). "Elevated insulin growth factor-1 in dentate gyrus induces cognitive deficits in pre-term newborns." Cerebral Cortex: bhac516.

Jaffey, D. M., J. McAdams, et al. "Vagal Preganglionic Axons Arborize in the Myenteric Plexus into Two Types: Nitrergic and Non-nitrergic Postganglionic Motor Pools?" American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 0(0): null.

Steffen, D. M., C. M. Hanes, et al. (2023). "A unique role for Protocadherin γC3 in promoting dendrite arborization through an Axin1-dependent mechanism." The Journal of Neuroscience: JN-RM-0729-0722.

Sun, J., S. Osenberg, et al. (2023). "Mutations in the transcriptional regulator MeCP2 severely impact key cellular and molecular signatures of human astrocytes during maturation." Cell Reports 42(1): 111942.

Freire-Cobo, C., E. S. Rothwell, et al. (2022). "Neuronal vulnerability to brain aging and neurodegeneration in cognitively impaired marmoset monkeys (Callithrix jacchus)." Neurobiology of Aging.

Plachez, C., V. Tsytsarev, et al. (2022). "Amyloid deposition and dendritic complexity of corticocortical projection cells in 5xFAD mouse." Neuroscience.

Hasegawa, K., T. K. Matsui, et al. (2022). "N-WASP-Arp2/3 signaling controls multiple steps of dendrite maturation in Purkinje cells in vivo." Development 149(23).

Stark, R. A., B. Brinkman, et al. (2023). "Atypical play experiences in the juvenile period has an impact on the development of the medial prefrontal cortex in both male and female rats." Behavioural Brain Research 439: 114222.

Takahashi, M., T. Kobayashi, et al. (2022). "Preferential arborization of dendrites and axons of parvalbumin- and somatostatin-positive GABAergic neurons within subregions of the mouse claustrum." Neuroscience Research.

Beebe, N. L., M. A. Silveira, et al. (2022). "Neurotransmitter phenotype and axonal projection patterns of VIP-expressing neurons in the inferior colliculus." Journal of Chemical Neuroanatomy 126: 102189.

Guerra, K. T. K., J. Renner, et al. (2022). "Human cortical amygdala dendrites and spines morphology under open-source three-dimensional reconstruction procedures." Journal of Comparative Neurology n/a(n/a).

Wei, J.-R., Z.-Z. Hao, et al. (2022). "Identification of visual cortex cell types and species differences using single-cell RNA sequencing." Nature Communications 13(1): 6902.

Tariq, K., E. Cullen, et al. (2022). "Disruption of mTORC1 rescues neuronal overgrowth and synapse function dysregulated by Pten loss." Cell Reports 41(5): 111574.

Green, T. R. F., S. M. Murphy, et al. (2022). "Comparisons of quantitative approaches for assessing microglial morphology reveal inconsistencies, ecological fallacy, and a need for standardization." Scientific Reports 12(1): 18196.

Usende, I. L., J. O. Olopade, et al. (2022). "Neuroecotoxicology: Effects of environmental heavy metal exposure on the brain of African giant rats and the contribution of vanadium to the neuropathology." IBRO Neuroscience Reports 13: 215-234.

Kim, D. H., S. J. Lee, et al. (2022). "Whole structural reconstruction and quantification of epidermal innervation through the suction blister method and skin-clearing technique." Scientific Reports 12(1): 13596.

Agnew-Svoboda, W., T. Ubina, et al. (2022). "A genetic tool for the longitudinal study of a subset of post-inflammatory reactive astrocytes." Cell Reports Methods 2(8): 100276.

Merino-Serrais, P., S. Plaza-Alonso, et al. (2022). "Microanatomical study of pyramidal neurons in the contralesional somatosensory cortex after experimental ischemic stroke." Cerebral Cortex: bhac121.

de Prisco, N., A. Chemiakine, et al. (2022). "Protocol to assess the effect of disease-driving variants on mouse brain morphology and primary hippocampal neurons." STAR Protocols 3(2): 101244.

wu, s., Y. Yuye, et al. (2022). "FUS aggregation following ischemic stroke favors brain astrocyte activation through inducing excessive autophagy" Cellular and Molecular Neurobiology.

Jiang, S., L. Xiao, et al. (2022). "The GABAB receptor agonist STX209 reverses the autism‑like behaviour in an animal model of autism induced by prenatal exposure to valproic acid." Mol Med Rep 25(5): 154.

Pollo, M. L. M., C. Gimenes, et al. (2022). "Male rats are more vulnerable to pentylenetetrazole-kindling model but females have more spatial memory-related deficits." Epilepsy & Behavior 129: 108632.

Shao, Y., Q. Ge, et al. (2022). "Pathological Networks Involving Dysmorphic Neurons in Type II Focal Cortical Dysplasia." Neuroscience Bulletin.

Wang, Q., Y. Wang, et al. (2022). "Regional and cell type-specific afferent and efferent projections of the mouse claustrum." bioRxiv: 2022.2002.2023.481555. 10.1101/2022.02.23.481555

Cheon, S., A. M. Culver, et al. (2022). "Counteracting epigenetic mechanisms regulate the structural development of neuronal circuitry in human neurons." Molecular Psychiatry. 10.1038/s41380-022-01474-1

Fournel, R., M. L. Veruki, et al. (2022). "Digital reconstruction and quantitative morphometric analysis of bipolar cells in live rat retinal slices." Journal of Comparative Neurology n/a(n/a).

Getz, S. A., K. Tariq, et al. (2022). "PTEN Regulates Dendritic Arborization by Decreasing Microtubule Polymerization Rate." The Journal of Neuroscience: JN-RM-1835-1821.

Sanders, B., D. D’Andrea, et al. (2022). "Transcriptional programs regulating neuronal differentiation are disrupted in DLG2 knockout human embryonic stem cells and enriched for schizophrenia and related disorders risk variants." Nature Communications 13(1): 27.

Hartveit, E., M. L. Veruki, et al. (2022). "Dendritic morphology of an inhibitory retinal interneuron enables simultaneous local and global synaptic integration." The Journal of Neuroscience: JN-RM-0695-0621.

Standiford, M. M., E. M. Grund, et al. (2021). "Citrullinated myelin induces microglial TNFα and inhibits endogenous repair in the cuprizone model of demyelination." Journal of Neuroinflammation 18(1): 305.

van Rhijn, J.-R., Y. Shi, et al. (2022). "Brunner syndrome associated MAOA mutations result in NMDAR hyperfunction and increased network activity in human dopaminergic neurons." Neurobiology of Disease 163: 105587.

Havton, L. A., N. P. Biscola, et al. (2021). "Human organ donor-derived vagus nerve biopsies allow for well-preserved ultrastructure and high-resolution mapping of myelinated and unmyelinated fibers." Scientific Reports 11(1): 23831.

Yu, T.-S., Y. Tensaouti, et al. (2021). "Astrocytic ApoE underlies maturation of hippocampal neurons and cognitive recovery after traumatic brain injury in mice." Communications Biology 4(1): 1303.

Weber, A. J., A. B. Adamson, et al. (2021). "Conditional deletion of ROCK2 induces anxiety-like behaviors and alters dendritic spine density and morphology on CA1 pyramidal neurons." Molecular Brain 14(1): 169.

Yang, C., Y. Tian, et al. (2021). "Restoration of FMRP expression in adult V1 neurons rescues visual deficits in a mouse model of fragile X syndrome." Protein & Cell.

Lentini, C., M. d’Orange, et al. (2021). "Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy." Cell Stem Cell.

Shirinpour, S., N. Hananeia, et al. "Multi-scale modeling toolbox for single neuron and subcellular activity under Transcranial Magnetic Stimulation." Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation.

Achilly, N. P., Wang, W., & Zoghbi, H. Y. (2021). Presymptomatic training mitigates functional deficits in a mouse model of Rett syndrome. Nature. doi: 10.1038/s41586-021-03369-7.

Adler, S. M., Girotti, M., & Morilak, D. A. (2020). Optogenetically-induced long term depression in the rat orbitofrontal cortex ameliorates stress-induced reversal learning impairment. Neurobiology of Stress, 13, 100258. doi:

Allen, A. G., Worell, S. D., Nwaozo, G. C., Madrid, R., Dampier, W., Nonnemacher, M. R., & Wigdahl, B. (2019). Abstracts of the 16th International Symposium on NeuroVirology November 12-16, 2019 Atlanta, GA, USA. [journal article]. Journal of NeuroVirology. doi: 10.1007/s13365-019-00807-1.

Asede, D., Doddapaneni, D., Chavez, A., Okoh, J., Ali, S., Von-Walter, C., & Bolton, M. M. (2021). Apical intercalated cell cluster: A distinct sensory regulator in the amygdala. Cell Reports, 35(7), 109151. doi:

Ayata, P., Badimon, A., Strasburger, H. J., Duff, M. K., Montgomery, S. E., Loh, Y.-H. E., . . . Schaefer, A. (2018). Epigenetic regulation of brain region-specific microglia clearance activity. Nature Neuroscience, 21(8), 1049-1060. doi: 10.1038/s41593-018-0192-3.

Baharani, A., Wei, Z., Roesler, W. J., & Mousseau, D. D. (2020). A Progressive Loss of phosphoSer138-Profilin Aligns with Symptomatic Course in the R6/2 Mouse Model of Huntington’s Disease: Possible Sex-Dependent Signaling. Cellular and Molecular Neurobiology. doi: 10.1007/s10571-020-00984-2.

Baker, C. A., Bolton, M. M., & Parra, A. (2019). Regional Specialization of Pyramidal Neuron Morphology and Physiology in the Tree Shrew Neocortex. Cerebral Cortex. doi: 10.1093/cercor/bhy326.

Baltussen, L. L., Negraes, P. D., Silvestre, M., Claxton, S., Moeskops, M., Christodoulou, E., . . . Ultanir, S. K. (2018). Chemical genetic identification of CDKL5 substrates reveals its role in neuronal microtubule dynamics. [10.15252/embj.201899763]. The EMBO Journal. doi.

Bannatyne, B. A., Hao, Z.-Z., Dyer, G. M. C., Watanabe, M., Maxwell, D. J., & Berkowitz, A. (2020). Neurotransmitters and motoneuron contacts of multifunctional and behaviorally specialized turtle spinal cord interneurons. The Journal of Neuroscience, 2200-2219. doi: 10.1523/jneurosci.2200-19.2020.

Bayne, M., Alvarsson, A., Devarakonda, K., Li, R., Jimenez-Gonzalez, M., Garibay, D., . . . Stanley, S. A. (2020). Repeated hypoglycemia remodels neural inputs and disrupts mitochondrial function to blunt glucose-inhibited GHRH neuron responsiveness. JCI Insight, 5(21). doi: 10.1172/jci.insight.133488.

Bell, A. M., Gutierrez-Mecinas, M., Stevenson, A., Casas-Benito, A., Wildner, H., West, S. J., . . . Todd, A. J. (2020). Expression of green fluorescent protein defines a specific population of lamina II excitatory interneurons in the GRP::eGFP mouse. Scientific Reports, 10(1), 13176. doi: 10.1038/s41598-020-69711-7.

Belmer, A., Patkar, O. L., Lanoue, V., & Bartlett, S. E. (2018). 5-HT1A receptor-dependent modulation of emotional and neurogenic deficits elicited by prolonged consumption of alcohol. Scientific Reports, 8(1), 2099. doi: 10.1038/s41598-018-20504-z.

Benavides-Piccione, R., Regalado-Reyes, M., Fernaud-Espinosa, I., Kastanauskaite, A., Tapia-González, S., León-Espinosa, G., . . . DeFelipe, J. (2019). Differential Structure of Hippocampal CA1 Pyramidal Neurons in the Human and Mouse. Cerebral Cortex. doi: 10.1093/cercor/bhz122.

Benson, C. A., Olson, K.-L., Patwa, S., Reimer, M. L., Bangalore, L., Hill, M., . . . Tan, A. M. (2021). Conditional RAC1 knockout in motor neurons restores H-reflex rate-dependent depression after spinal cord injury. Scientific Reports, 11(1), 7838. doi: 10.1038/s41598-021-87476-5.

Bocchio, M., Gouny, C., Angulo-Garcia, D., Toulat, T., Tressard, T., Quiroli, E., . . . Cossart, R. (2020). Hippocampal hub neurons maintain distinct connectivity throughout their lifetime. Nature Communications, 11(1), 4559. doi: 10.1038/s41467-020-18432-6.

Bondy, B. J., Haimes, D. B., & Golding, N. L. (2021). Physiological diversity influences detection of stimulus envelope and fine structure in neurons of the medial superior olive. The Journal of Neuroscience, JN-RM-2354-2320. doi: 10.1523/jneurosci.2354-20.2021.

Boros, B. D., Greathouse, K. M., Gearing, M., & Herskowitz, J. H. (2018). Dendritic spine remodeling accompanies Alzheimer’s disease pathology and genetic susceptibility in cognitively normal aging. Neurobiology of Aging. doi:

Boros, B. D., Greathouse, K. M., Gentry, E. G., Curtis, K. A., Birchall, E. L., Gearing, M., & Herskowitz, J. H. (2017). Dendritic spines provide cognitive resilience against Alzheimer's disease. Annals of Neurology, n/a-n/a. doi: 10.1002/ana.25049.

Borreca, A., Valeri, F., De Luca, M., Ernst, L., Russo, A., Nobili, A., . . . Ammassari-Teule, M. (2020). Transient upregulation of translational efficiency in prodromal and early symptomatic Tg2576 mice contributes to Aβ pathology. Neurobiology of Disease, 104787. doi:

Buskila, Y., Bellot-Saez, A., Kékesi, O., Cameron, M., & Morley, J. (2020). Extending the Life Span of Acute Neuronal Tissue for Imaging and Electrophysiological Studies. In N. J. D. Wright (Ed.), Basic Neurobiology Techniques (pp. 235-259). New York, NY: Springer US.

Chaaya, N., Jacques, A., Belmer, A., Richard, D. J., Bartlett, S. E., Battle, A. R., & Johnson, L. R. (2018). Localization of Contextual and Context Removed Auditory Fear Memory within the Basolateral Amygdala Complex. Neuroscience. doi:

Che, A., Babij, R., Iannone, A. F., Fetcho, R. N., Ferrer, M., Liston, C., . . . De Marco García, N. V. (2018). Layer I Interneurons Sharpen Sensory Maps during Neonatal Development. Neuron. doi:

Chen, C.-K. J., Chen, Y.-J., Shay, A., Weber, N., & Jiang, Z. (2020). Retinal ganglion cells with recombinase activity in mice with engineered Cre in the vGluT3 gene. Investigative Ophthalmology & Visual Science, 61(7), 4522-4522. doi. 

Chen, S.-T., Lai, W.-J., Zhang, W.-J., Chen, Q.-P., Zhou, L.-B., So, K.-F., & Shi, L.-L. (2020). Insulin-like growth factor 1 partially rescues early developmental defects caused by SHANK2 knockdown in human neurons. [Research Article]. Neural Regeneration Research, 15(12), 2335-2343. doi: 10.4103/1673-5374.285002.;year=2020;volume=15;...

Chen, X., Xie, C., Tian, W., Sun, L., Wang, Z., Hawes, S., . . . Cai, H. (2020). Parkinson’s disease-related Leucine-rich repeat kinase 2 modulates nuclear morphology and genomic stability in striatal projection neurons during aging. Molecular Neurodegeneration, 15(1), 12. doi: 10.1186/s13024-020-00360-0.

Collins, D. P., Anastasiades, P. G., Marlin, J. J., & Carter, A. G. (2018). Reciprocal Circuits Linking the Prefrontal Cortex with Dorsal and Ventral Thalamic Nuclei. Neuron. doi:

Czaniecki, C., Ryan, T., Stykel, M. G., Drolet, J., Heide, J., Hallam, R., . . . Ryan, S. D. (2019). Axonal pathology in hPSC-based models of Parkinson’s disease results from loss of Nrf2 transcriptional activity at the Map1b gene locus. Proceedings of the National Academy of Sciences, 201900576. doi: 10.1073/pnas.1900576116.

da Silva, M. P., Moraes, D. J. A., Bonagamba, L. G. H., Mecawi, A. d. S., Varanda, W. A., & Machado, B. H. (2019). Hyperexcitability and plasticity induced by sustained hypoxia on rectus abdominis motoneurons. The Journal of Physiology, 0(ja). doi: doi:10.1113/JP277030.

Delatour, L. C., Yeh, P. W., & Yeh, H. H. (2018). Ethanol Exposure In Utero Disrupts Radial Migration and Pyramidal Cell Development in the Somatosensory Cortex. Cerebral Cortex, bhy094-bhy094. doi: 10.1093/cercor/bhy094.

Delatour, L. C., Yeh, P. W. L., & Yeh, H. H. (2019). Prenatal Exposure to Ethanol Alters Synaptic Activity in Layer V/VI Pyramidal Neurons of the Somatosensory Cortex. Cerebral Cortex. doi: 10.1093/cercor/bhz199.

Diaz Vera, D., Soucy, J. R., Lee, A., Koppes, R. A., & Koppes, A. N. (2021). Light irradiation of peripheral nerve cells: Wavelength impacts primary sensory neuron outgrowth in vitro. Journal of Photochemistry and Photobiology B: Biology, 215, 112105. doi:

Dickstein, D. L., Dickstein, D. R., Janssen, W. G. M., Hof, P. R., Glaser, J. R., Rodriguez, A., . . . Tappan, S. J. (2016). Automatic Dendritic Spine Quantification from Confocal Data with Neurolucida 360 Current Protocols in Neuroscience: John Wiley & Sons, Inc.

Dickstein, D. L., Talty, R., Bresnahan, E., Varghese, M., Perry, B., Janssen, W. G. M., . . . Limoli, C. L. (2018). Alterations in synaptic density and myelination in response to exposure to high-energy charged particles. Journal of Comparative Neurology, 0(ja). doi: doi:10.1002/cne.24530.

Doan, T. P., Lagartos-Donate, M. J., Nilssen, E. S., Ohara, S., & Witter, M. P. (2019). Convergent Projections from Perirhinal and Postrhinal Cortices Suggest a Multisensory Nature of Lateral, but Not Medial, Entorhinal Cortex. Cell Reports, 29(3), 617-627.e617. doi:

Donega, V., Marcy, G., Lo Giudice, Q., Zweifel, S., Angonin, D., Fiorelli, R., . . . Raineteau, O. (2018). Transcriptional Dysregulation in Postnatal Glutamatergic Progenitors Contributes to Closure of the Cortical Neurogenic Period. Cell Reports, 22(10), 2567-2574. doi:

El Boukhari, H., Ouhaz, Z., Ba-M'hamed, S., & Bennis, M. (2020). Early lesion of the reticular thalamic nucleus disrupts the structure and function of the mediodorsal thalamus and prefrontal cortex. Developmental Neurobiology, n/a(n/a). doi: 10.1002/dneu.22733.

Erickson, R. P., Aras, S., Purandare, N., Hüttemann, M., Liu, J., Dragotto, J., . . . Grossman, L. I. (2020). Decreased membrane cholesterol in liver mitochondria of the point mutation mouse model of juvenile Niemann–Pick C1, Npc1nmf164. Mitochondrion, 51, 15-21. doi:

Frega, M., Linda, K., Keller, J. M., Gümüş-Akay, G., Mossink, B., van Rhijn, J.-R., . . . Nadif Kasri, N. (2019). Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling. Nature Communications, 10(1), 4928. doi: 10.1038/s41467-019-12947-3.

Fu, M.-m., McAlear, T. S., Nguyen, H., Oses-Prieto, J. A., Valenzuela, A., Shi, R. D., . . . Barres, B. A. (2019). The Golgi Outpost Protein TPPP Nucleates Microtubules and Is Critical for Myelination. Cell, 179(1), 132-146.e114. doi:

Furuta, T., Bush, N. E., Yang, A. E.-T., Ebara, S., Miyazaki, N., Murata, K., . . . Hartmann, M. J. Z. (2020). The Cellular and Mechanical Basis for Response Characteristics of Identified Primary Afferents in the Rat Vibrissal System. Current Biology. doi:

Gaborieau, E., Hurtado-Chong, A., Fernández, M., Azim, K., & Raineteau, O. (2018). A dual role for the transcription factor Sp8 in postnatal neurogenesis. Scientific Reports, 8(1), 14560. doi: 10.1038/s41598-018-32134-6.

Gennarino, V. A., Palmer, E. E., McDonell, L. M., Wang, L., Adamski, C. J., Koire, A., . . . Zoghbi, H. Y. (2018). A Mild PUM1 Mutation Is Associated with Adult-Onset Ataxia, whereas Haploinsufficiency Causes Developmental Delay and Seizures. Cell, 172(5), 924-936.e911. doi:

Gisabella, B., Scammell, T., Bandaru, S. S., & Saper, C. B. (2019). Regulation of hippocampal dendritic spines following sleep deprivation. Journal of Comparative Neurology, 0(ja). doi: 10.1002/cne.24764.

Goodliffe, J. W., Song, H., Rubakovic, A., Chang, W., Medalla, M., Weaver, C. M., & Luebke, J. I. (2018). Differential changes to D1 and D2 medium spiny neurons in the 12-month-old Q175+/- mouse model of Huntington’s Disease. PLOS ONE, 13(8), e0200626. doi: 10.1371/journal.pone.0200626.

Harley, S. B. R., Willis, E. F., Shaikh, S. N., Blackmore, D. G., Sah, P., Ruitenberg, M. J., . . . Vukovic, J. (2021). Selective ablation of BDNF from microglia reveals novel roles in self-renewal and hippocampal neurogenesis. The Journal of Neuroscience, JN-RM-2539-2520. doi: 10.1523/jneurosci.2539-20.2021.

Hartveit, E., Zandt, B.-J., & Veruki, M. L. (2019). Multiphoton Excitation Microscopy for the Reconstruction and Analysis of Single Neuron Morphology. In E. Hartveit (Ed.), Multiphoton Microscopy (pp. 161-194). New York, NY: Springer New York.

Helton, T. D., Zhao, M., Farris, S., & Dudek, S. M. (2018). Diversity of dendritic morphology and entorhinal cortex synaptic effectiveness in mouse CA2 pyramidal neurons. Hippocampus, 0(ja). doi: doi:10.1002/hipo.23012.

Henderson, B. W., Greathouse, K. M., Ramdas, R., Walker, C. K., Rao, T. C., Bach, S. V., . . . Herskowitz, J. H. (2019). Pharmacologic inhibition of LIMK1 provides dendritic spine resilience against β-amyloid. Science Signaling, 12(587), eaaw9318. doi.

Hinova-Palova, D., Kotov, G., Landzhov, B., Edelstein, L., Iliev, A., Stanchev, S., . . . Paloff, A. (2019). Cytoarchitecture of the dorsal claustrum of the cat: a quantitative Golgi study. [journal article]. Journal of Molecular Histology. doi: 10.1007/s10735-019-09839-7.

Hjorth, J. J. J., Kozlov, A., Carannante, I., Frost Nylén, J., Lindroos, R., Johansson, Y., . . . Grillner, S. (2020). The microcircuits of striatum in silico. Proceedings of the National Academy of Sciences, 117(17), 9554-9565. doi: 10.1073/pnas.2000671117.

Hoshiba, Y., Toda, T., Ebisu, H., Wakimoto, M., Yanagi, S., & Kawasaki, H. (2016). Sox11 Balances Dendritic Morphogenesis with Neuronal Migration in the Developing Cerebral Cortex. The Journal of Neuroscience, 36(21), 5775-5784. doi. 

Jacques, A., Chaaya, N., Hettiarachchi, C., Carmody, M.-L., Beecher, K., Belmer, A., . . . Johnson, L. R. (2019). Microtopography of fear memory consolidation and extinction retrieval within prefrontal cortex and amygdala. [journal article]. Psychopharmacology. doi: 10.1007/s00213-018-5068-4.

Jeong, J., Pandey, S., Li, Y., Badger, J. D., Lu, W., & Roche, K. W. (2019). PSD-95 binding dynamically regulates NLGN1 trafficking and function. Proceedings of the National Academy of Sciences, 116(24), 12035. doi: 10.1073/pnas.1821775116.

Jiang, S., Guan, Y., Chen, S., Jia, X., Ni, H., Zhang, Y., . . . Gong, H. (2020). Anatomically revealed morphological patterns of pyramidal neurons in layer 5 of the motor cortex. Scientific Reports, 10(1), 7916. doi: 10.1038/s41598-020-64665-2.

Kashyap, G., Bapat, D., Das, D., Gowaikar, R., Amritkar, R. E., Rangarajan, G., . . . Ambika, G. (2019). Synapse loss and progress of Alzheimer’s disease -A network model. Scientific Reports, 9(1), 6555. doi: 10.1038/s41598-019-43076-y.

Kékesi, O., Liang, H., Münch, G., Morley, J. W., Gyengesi, E., & Buskila, Y. (2019). The differential impact of acute microglia activation on the excitability of cholinergic neurons in the mouse medial septum. [journal article]. Brain Structure and Function. doi: 10.1007/s00429-019-01905-w.

Kiyama, T., Long, Y., Chen, C.-K., Whitaker, C. M., Shay, A., Wu, H., . . . Mao, C.-A. (2019). Essential Roles of Tbr1 in the Formation and Maintenance of the Orientation-Selective J-RGCs and a Group of OFF-Sustained RGCs in Mouse. Cell Reports, 27(3), 900-915.e905. doi:

Kobayashi, C., Okamoto, K., Mochizuki, Y., Urakubo, H., Funayama, K., Ishikawa, T., . . . Ikegaya, Y. (2018). GABAergic inhibition reduces the impact of synaptic excitation on somatic excitation. Neuroscience Research. doi:

Koeppen, J., Nguyen, A. Q., Nikolakopoulou, A. M., Garcia, M., Hanna, S., Woodruff, S., . . . Ethell, I. M. (2018). Functional consequences of synapse remodeling following astrocyte-specific regulation of ephrin-B1 in the adult hippocampus. [10.1523/JNEUROSCI.3618-17.2018]. The Journal of Neuroscience. doi.

Kovaleski, R. F., Callahan, J. W., Chazalon, M., Wokosin, D. L., Baufreton, J., & Bevan, M. D. (2020). Dysregulation of external globus pallidus-subthalamic nucleus network dynamics in parkinsonian mice during cortical slow-wave activity and activation. The Journal of Physiology, n/a(n/a). doi: 10.1113/jp279232.

Kuddannaya, S., Tong, C. S., Fan, Y., & Zhang, Y. (2018). Geometrically Mediated Topographic Steering of Neurite Behaviors and Network Formation. Advanced Materials Interfaces, 1700819-n/a. doi: 10.1002/admi.201700819.

Lee, D., Hyun, J. H., Jung, K., Hannan, P., & Kwon, H.-B. (2017). A calcium- and light-gated switch to induce gene expression in activated neurons. [Research]. Nat Biotech, advance online publication. doi: 10.1038/nbt.3902

Lee, S.-h., Jaejin, S., & Chang, M.-y. (2019). Transplantation effect of dopamine neuron engraftment by co-transplantation of midbrain astrocytes and vm-npcs: Google Patents.

Lellouche, Y., Minert, A., Schreiber, C., Aroch, I., Vaso, K., Fishman, Y., & Devor, M. (2020). Individual Mesopontine Neurons Implicated in Anesthetic Loss-of-consciousness Employ Separate Ascending Pathways to the Cerebral Cortex. Neuroscience. doi:

Lesicko, A. M. H., Sons, S. K., & Llano, D. A. (2020). Circuit mechanisms underlying the segregation and integration of parallel processing streams in the inferior colliculus. The Journal of Neuroscience, JN-RM-0646-0620. doi: 10.1523/jneurosci.0646-20.2020.

Li, Y., Missig, G., Finger, B. C., Landino, S. M., Alexander, A. J., Mokler, E., . . . Bolshakov, V. Y. (2018). Maternal and Early Postnatal Immune Activation Produce Dissociable Effects on Neurotransmission in mPFC-Amygdala Circuits. [10.1523/JNEUROSCI.3642-17.2018]. The Journal of Neuroscience. doi.

Linske, M. (2019). Use of 3D Neuronal Reconstructions for Carrying out Morphological Analyses. doi.

Lu, H.-C., Tan, Q., Rousseaux, M. W. C., Wang, W., Kim, J.-Y., Richman, R., . . . Zoghbi, H. Y. (2017). Disruption of the ATXN1-CIC complex causes a spectrum of neurobehavioral phenotypes in mice and humans. [Article]. Nat Genet, advance online publication. doi: 10.1038/ng.3808

Maier, E., Lauer, S. M., & Brecht, M. (2020). Conserved layer 4 organization and respiration locking in the rodent nose somatosensory cortex. Journal of Neurophysiology. doi: 10.1152/jn.00138.2020.

Marquié, M., Agüero, C., Amaral, A. C., Villarejo-Galende, A., Ramanan, P., Chong, M. S. T., . . . Gómez-Isla, T. (2019). [18F]-AV-1451 binding profile in chronic traumatic encephalopathy: a postmortem case series. [journal article]. Acta Neuropathologica Communications, 7(1), 164. doi: 10.1186/s40478-019-0808-1.

Matovic, S., Ichiyama, A., Igarashi, H., Salter, E. W., Sunstrum, J. K., Wang, X. F., . . . Inoue, W. (2020). Neuronal hypertrophy dampens neuronal intrinsic excitability and stress responsiveness during chronic stress. The Journal of Physiology, n/a(n/a). doi: 10.1113/jp279666.

McClendon, E., Wang, K., Degener, O., Brien, K., Hagen, M. W., Gong, X., . . . Back, S. A. (2019). Transient Hypoxemia Disrupts Anatomical and Functional Maturation of Preterm Fetal Ovine CA1 Pyramidal Neurons. The Journal of Neuroscience, 1364-1319. doi: 10.1523/jneurosci.1364-19.2019.

McLaurin, K. A., Li, H., Booze, R. M., Fairchild, A. J., & Mactutus, C. F. (2018). Unraveling Individual Differences In The HIV-1 Transgenic Rat: Therapeutic Efficacy Of Methylphenidate. Scientific Reports, 8(1), 136. doi: 10.1038/s41598-017-18300-2.

McLaurin, K. A., Li, H., Booze, R. M., & Mactutus, C. F. (2019). Disruption of Timing: NeuroHIV Progression in the Post-cART Era. Scientific Reports, 9(1), 827. doi: 10.1038/s41598-018-36822-1.

Meredith, M. A., Keniston, L. P., Prickett, E. H., Bajwa, M., Cojanu, A., Clemo, H. R., & Allman, B. L. (2020). What is a multisensory cortex? A laminar, connectional, and functional study of a ferret temporal cortical multisensory area. Journal of Comparative Neurology, n/a(n/a). doi: 10.1002/cne.24859.

Michaelson, S. D., Ozkan, E. D., Aceti, M., Maity, S., Llamosas, N., Weldon, M., . . . Rumbaugh, G. (2018). SYNGAP1 heterozygosity disrupts sensory processing by reducing touch-related activity within somatosensory cortex circuits. Nature Neuroscience, 21(12), 1-13. doi: 10.1038/s41593-018-0268-0.

Motley, S. E., Grossman, Y., Janssen, W. G. M., Baxter, M. G., Rapp, P. R., Dumitriu, D., & Morrison, J. H. (2018). Selective loss of thin spines in area 7a of the primate intraparietal sulcus predicts age-related working memory impairment. [10.1523/JNEUROSCI.1234-18.2018]. The Journal of Neuroscience. doi.

Nagahama, K., Fujino, S., Watanabe, T., Uesaka, N., & Kano, M. (2021). Combining electrophysiology and optogenetics for functional screening of pyramidal neurons in the mouse prefrontal cortex. STAR Protocols, 2(2), 100469. doi:

Nakajima, K., Miranda, A., Craig, D. W., Shekhtman, T., Kmoch, S., Bleyer, A., . . . Kelsoe, J. R. (2020). Ntrk1 mutation co-segregating with bipolar disorder and inherited kidney disease in a multiplex family causes defects in neuronal growth and depression-like behavior in mice. Translational Psychiatry, 10(1), 407. doi: 10.1038/s41398-020-01087-8.

Nash, B., Festa, L., Lin, C., & Meucci, O. (2019). Opioid and chemokine regulation of cortical synaptodendritic damage in HIV-associated neurocognitive disorders. Brain Research, 1723, 146409. doi:

Nasrallah, K., Therreau, L., Robert, V., Huang, A. J. Y., McHugh, T. J., Piskorowski, R. A., & Chevaleyre, V. (2019). Routing Hippocampal Information Flow through Parvalbumin Interneuron Plasticity in Area CA2. Cell Reports, 27(1), 86-98.e83. doi:

Nedelescu, H. (2018). Brain architecture at varying scales. Journal of Neuroscience Research, 96(9), 1447-1449. doi: doi:10.1002/jnr.24272.

Nedelescu, H., Abdelhack, M., & Pritchard, A. T. (2018). Regional differences in Purkinje cell morphology in the cerebellar vermis of male mice. Journal of Neuroscience Research, n/a-n/a. doi: 10.1002/jnr.24206.

Nestor, J., Arinuma, Y., Huerta, T. S., Kowal, C., Nasiri, E., Kello, N., . . . Diamond, B. (2018). Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors. [10.1084/jem.20180776]. The Journal of Experimental Medicine. doi.

Noakes, Z., Keefe, F., Tamburini, C., Kelly, C. M., Cruz Santos, M., Dunnett, S. B., . . . Li, M. (2019). Human Pluripotent Stem Cell-Derived Striatal Interneurons: Differentiation and Maturation In Vitro and in the Rat Brain. Stem Cell Reports. doi:

Osipovitch, M., Asenjo Martinez, A., Mariani, J. N., Cornwell, A., Dhaliwal, S., Zou, L., . . . Goldman, S. A. (2018). Human ESC-Derived Chimeric Mouse Models of Huntington’s Disease Reveal Cell-Intrinsic Defects in Glial Progenitor Cell Differentiation. Cell Stem Cell. doi:

Panja, D., Li, Y., Ward, M. E., & Li, Z. (2021). miR-936 is Increased in Schizophrenia and Inhibits Neural Development and AMPA Receptor-Mediated Synaptic Transmission. Schizophrenia Bulletin, (sbab046). doi: 10.1093/schbul/sbab046.

Paulina Urban, V. R. T., Michał Denkiewicz, Grzegorz Bokota, Nirmal Das, Subhadip Basu, and Dariusz Plewczynski. (2020). The Mixture of Autoregressive Hidden Markov Models of Morphology for Dentritic Spines During Activation Process. Journal of Computational Biology, 0(0), null. doi: 10.1089/cmb.2019.0383.

Pereira, L. d. S., Gobbo, D. R., Ferreira, J. G. P., Horta-Junior, J. d. A. d. C. e., Sá, S. I., & Bittencourt, J. C. (2020). Effects of ovariectomy on inputs from the medial preoptic area to the ventromedial nucleus of the hypothalamus of young adult rats. Journal of Anatomy, n/a(n/a). doi: 10.1111/joa.13304.

Piard, J., Hu, J.-H., Campeau, P. M., Rzońca, S., Van Esch, H., Vincent, E., . . . Worley, P. F. (2017). FRMPD4 mutations cause X-linked intellectual disability and disrupt dendritic spine morphogenesis. Human Molecular Genetics, ddx426-ddx426. doi: 10.1093/hmg/ddx426.

Poppe, L., Rué, L., Timmers, M., Lenaerts, A., Storm, A., Callaerts-Vegh, Z., . . . Lemmens, R. (2019). EphA4 loss improves social memory performance and alters dendritic spine morphology without changes in amyloid pathology in a mouse model of Alzheimer’s disease. Alzheimer's Research & Therapy, 11(1), 102. doi: 10.1186/s13195-019-0554-4.

Putatunda, R., Zhang, Y., Li, F., Yang, X.-F., Barbe, M. F., & Hu, W. (2018). Adult neurogenic deficits in HIV-1 Tg26 transgenic mice. [journal article]. Journal of Neuroinflammation, 15(1), 287. doi: 10.1186/s12974-018-1322-2.

Quinlan, K. A., Reedich, E., Arnold, W. D., Puritz, A., Cavarsan, C. F., Heckman, C., & DiDonato, C. J. (2019). Hyperexcitability precedes motoneuron loss in the Smn2B/- mouse model of spinal muscular atrophy. Journal of Neurophysiology, 0(0), null. doi: 10.1152/jn.00652.2018.

Rios-Pilier, J., & Krimm, R. F. (2019). TrkB expression and dependence divides gustatory neurons into three subpopulations. [journal article]. Neural Development, 14(1), 3. doi: 10.1186/s13064-019-0127-z.

Rühling, S., Kramer, F., Schmutz, S., Amor, S., Jiangshan, Z., Schmitz, C., . . . Hochstrasser, T. (2018). Visualization of the Breakdown of the Axonal Transport Machinery: a Comparative Ultrastructural and Immunohistochemical Approach. [journal article]. Molecular Neurobiology. doi: 10.1007/s12035-018-1353-9.

Schmeichel, A. M., Gehrking, J. A., Minota, K., Low, P. A., Singer, W., & Mandrekar, J. N. (2019). Refined Quantitation of Sweat Gland Innervation. doi: 10.1093/jnen/nlz015.

Shahriar, S., Brian, M., Jared, C., Sommer, A., Sami, Z., Julio, G., . . . C., S. J. (2018). Morphometric analysis of astrocytes in brainstem respiratory regions. Journal of Comparative Neurology, 0(ja). doi: doi:10.1002/cne.24472.

Skelton, P. D., Poquerusse, J., Salinaro, J. R., Li, M., & Luikart, B. W. (2020). Activity-dependent dendritic elaboration requires Pten. Neurobiology of Disease, 134, 104703. doi:

Stedehouder, J., Couey, J., Brizee, D., Hosseini, B., Slotman, J., Dirven, C., . . . Kushner, S. (2017). Fast-spiking Parvalbumin Interneurons are Frequently Myelinated in the Cerebral Cortex of Mice and Humans. Cerebral Cortex, 1-13. doi.

Subramanian, J., Michel, K., Benoit, M., & Nedivi, E. (2019). CPG15/Neuritin Mimics Experience in Selecting Excitatory Synapses for Stabilization by Facilitating PSD95 Recruitment. Cell Reports, 28(6), 1584-1595.e1585. doi:

Tai, Y., Gallo, N. B., Wang, M., Yu, J.-R., & Van Aelst, L. (2019). Axo-axonic Innervation of Neocortical Pyramidal Neurons by GABAergic Chandelier Cells Requires AnkyrinG-Associated L1CAM. Neuron. doi:

Tong, D., Godale, C. M., Kadakia, F. K., Gu, Z., Danzer, C. S. K., Alghamdi, A., . . . Danzer, S. C. (2019). Immature murine hippocampal neurones do not develop long-term structural changes after a single isoflurane exposure. British Journal of Anaesthesia. doi:

Ullah, F., Asgarov, R., Venigalla, M., Liang, H., Niedermayer, G., Münch, G., & Gyengesi, E. (2020). Effects of a solid lipid curcumin particle formulation on chronic activation of microglia and astroglia in the GFAP-IL6 mouse model. Scientific Reports, 10(1), 2365. doi: 10.1038/s41598-020-58838-2.

Viar, K., Njoku, D., Secor McVoy, J., & Oh, U. (2020). Sarm1 knockout protects against early but not late axonal degeneration in experimental allergic encephalomyelitis. PLOS ONE, 15(6), e0235110. doi: 10.1371/journal.pone.0235110.

Walker, C. K., Greathouse, K. M., Boros, B. D., Poovey, E. H., Clearman, K. R., Ramdas, R., . . . Herskowitz, J. H. (2020). Dendritic Spine Remodeling and Synaptic Tau Levels in PS19 Tauopathy Mice. Neuroscience. doi:

Wang, L., Challis, C., Li, S., Fowlkes, C. C., Ravindra Kumar, S., Yuan, P.-Q., & Taché, Y. F. (2020). Multicolor sparse viral labeling and 3D digital tracing of enteric plexus in mouse proximal colon using a novel adeno-associated virus capsid. []. Neurogastroenterology & Motility, n/a(n/a), e14014. doi:

Wang, L., Pang, K., Han, K., Adamski, C. J., Wang, W., He, L., . . . Zoghbi, H. Y. (2019). An autism-linked missense mutation in SHANK3 reveals the modularity of Shank3 function. Molecular Psychiatry. doi: 10.1038/s41380-018-0324-x.

Whyland, K. L., Slusarczyk, A. S., & Bickford, M. E. (2019). GABAergic cell types in the superficial layers of the mouse superior colliculus. Journal of Comparative Neurology, 0(0). doi: 10.1002/cne.24754.

Wu, F., Han, B., Wu, S., Yang, L., Leng, S., Li, M., . . . Yao, H. (2019). Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335-3p/TIPARP. The Journal of Neuroscience, 0299-0219. doi: 10.1523/jneurosci.0299-19.2019.

Wu, P.-z., O’Malley, J. T., de Gruttola, V., & Liberman, M. C. (2021). Primary Neural Degeneration in Noise-Exposed Human Cochleas: Correlations with Outer Hair Cell Loss and Word-Discrimination Scores. The Journal of Neuroscience, JN-RM-3238-3220. doi: 10.1523/jneurosci.3238-20.2021.

Xiao, X., Djurisic, M., Hoogi, A., Sapp, R. W., Shatz, C. J., & Rubin, D. L. (2018). Automated dendritic spine detection using convolutional neural networks on maximum intensity projected microscopic volumes. Journal of Neuroscience Methods, 309, 25-34. doi:

Yousuf, H., Nye, A. N., & James R Moyer, J. (2020). Heterogeneity of Neuronal Firing Type and Morphology in Retrosplenial Cortex of Male F344 Rats. Journal of Neurophysiology, 0(0), null. doi: 10.1152/jn.00577.2019.

Zandt, B.-J., Losnegård, A., Hodneland, E., Veruki, M. L., Lundervold, A., & Hartveit, E. (2017). Semi-automatic 3D morphological reconstruction of neurons with densely branching morphology: application to retinal AII amacrine cells imaged with multi-photon excitation microscopy. Journal of Neuroscience Methods. doi: //

Zhan, J., Fegg, F. N., Kaddatz, H., Rühling, S., Frenz, J., Denecke, B., . . . Kipp, M. (2021). Focal white matter lesions induce long-lasting axonal degeneration, neuroinflammation and behavioral deficits. Neurobiology of Disease, 155, 105371. doi:

Zhang, X., Schlögl, A., & Jonas, P. (2020). Selective Routing of Spatial Information Flow from Input to Output in Hippocampal Granule Cells. Neuron. doi:

Zhang, Y., Du, L., Bai, Y., Han, B., He, C., Gong, L., . . . Yao, H. (2018). CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Molecular Psychiatry. doi: 10.1038/s41380-018-0285-0.

Zweifel, S., Buquet, J., Caruso, L., Rousseau, D., & Raineteau, O. (2018). “FlashMap” - A Semi-Automatic Tool for Rapid and Accurate Spatial Analysis of Marker Expression in the Subventricular Zone. Scientific Reports, 8(1), 16086. doi: 10.1038/s41598-018-33939-1.

Download our product sheet here.

Affordable Packages

Our three most popular packages are Neurolucida 360 Lite, Essentials, and Studio.

There are different options to set up Neurolucida 360 in your lab: a one-time upfront cost for the software, an annual subscription plan, mobile licenses to move Neurolucida 360 from one computer to another, and more.

Feature Description

Neurolucida 360

Neurolucida 360 ESSENTIALS

Neurolucida 360 STUDIO


User-guided tree tracing
Smart manual tree tracing
User-guided soma detection
Set specified color channels for analyses
3D editing
Create and share movies
Professional technical support
Open and FAIR file format
Big image data capability: Batch image filters
Big image data capability: Sub-volume tool
Big image data capability: Dense area visualization tool
Big image data capability: Dense area automatic tracing
Automatic tree tracing
Batch mode
Automatic soma detection
Image montaging
Automatic puncta detection, including synapses
Automatic puncta detection, with machine learning
Automatic spine detection and classification
Automatic trace evaluation

Who Is Using Neurolucida 360?

Neurolucida 360 is used across the globe by the most prestigious laboratories.

Cited in Peer Reviewed Scientific Publications

Neuroluicda 360’s utility is underscored by the number of references it receives in the worlds most important scientific publications. See examples below: 

Frequently Asked Questions (FAQ)

How affordable is Neurolucida 360?

To fit your scientific and budgetary needs, we have three popular packages of Neurolucida 360 available for purchase: Lite, Essentials, and Studio.

View comparison chart

There are even different options to set up any of the above Neurolucida 360 packages in your lab, including:  annual subscription plans, mobile licenses to move Neurolucida 360 from one computer to another, and more.

What microscopy file formats are supported by Neurolucida 360?

Our software supports almost all microscopy image file formats generated from a variety of microscopy vendors (CZI, TIF, JPX, LIF, and more). See the comprehensive list here.

Want to convert your file format to standardized formats, JPEG2000 (.jpx/.jp2) and/or OME-TIFF? Try our free tool, MicroFile+, which uses state-of-the-art compression methods to efficiently and accurately convert 2D and 3D images from most sources into manageable and metadata-enriched format(s).

How can I quantify the neuronal reconstructions created in Neurolucida 360?

With the included companion analysis Neurolucida Explorer software, you can perform detailed morphometric analyses of your Neurolucida 360 reconstructions. Automatically obtain quantitative data from a plethora of morphological, spatial (e.g. Sholl Analysis), and orientation analyses. In addition to the sophisticated and comprehensive generation of quantitative data, Neurolucida Explorer also shows many graphical displays that allow you to visualize the quantitative data in intuitive ways – and generate figures for publications and presentations.


What’s the difference between Neurolucida 360 and Neurolucida?

Neurolucida 360 can automatically reconstruct neurons from images and image stacks acquired by a variety of microscopy types – whereas Neurolucida – Microscope Edition enables manual reconstruction of neurons from tissue specimens directly from a research microscope.


I have hundreds of images to use with Neurolucida 360 – can I process data in batches?

Yes! Our Neurolucida 360 Studio package has sophisticated batch tracing tools for detecting somas, trees, varicosities, spines, and puncta across multiple files.

To further expedite your data throughput, you can also apply image filters in batch and employ batch analysis features with Neurolucida Explorer.

Are there tools in the software for creating high quality movies and images for publications?

Yes, you can create dynamic, high-resolution MP4 videos of your tracing and image data in Neurolucida 360’s intuitive 3D environment.

Are there online resources to help me learn the software?

All MBF Bioscience software comes with comprehensive, context-sensitive help guides accessible online or offline. Further, reduce the initial learning curve with our online learning center for how-to videos, quick guide PDFs, and product-specific webinars.

How should I prepare and image neurons for analysis with Neurolucida 360?

Neurolucida 360 excels at handling multi-resolution image data from a wide range of tissue preparations (e.g., serial sectioned, cleared), microscopy modalities (e.g., confocal, light sheet, expansion microscopy). Depending on your reconstruction and analysis goals, our team of experts can help you refine imaging parameters for optimal performance in Neurolucida 360. Contact us today.

Additionally, our scientists collaborated with researchers from the Icahn School of Medicine at Mount Sinai in New York to develop a set of guidelines on preparing and imaging confocal image data for Neurolucida 360. The guidelines, published in Current Protocols in Neuroscience, will help you get the best results for spine quantification and neuron reconstruction.

+ Read the publication


Robust Professional Support

Our service sets us apart, with a team that includes Ph.D. neuroscientists, experts in microscopy, stereology, neuron reconstruction, and image processing.  We’ve also developed a host of additional support services, including:

  • Forums
    We have over 25 active forums where open discussions take place.
    >> Learn More
  • On-Site/Training
    We’ve conducted over 750 remote software installations.
    >> Learn More
  • Webinars
    We’ve created over 55 webinars that demonstrate our products & their uses.
    >> Learn More

Request an Expert Demonstration

We offer both a free expert demonstration and a free trial copy of Neurolucida 360. During your demonstration you’ll have the opportunity to discuss your hardware, software, or experimental design questions with our team of Ph.D. neuroscientists and experts in microscopy, neuron tracing, and image processing.


During your free trial, use the tips and suggestions from a free, expert evaluation and find out how easy Neurolucida 360 is to use and how quickly you can obtain useful data.

Related Products


Neuron tracing & analysis directly at the microscope. The gold standard for neuron tracing.



Neurolucida® Explorer

The analytical software companion for Neurolucida and Neurolucida 360 designed to perform extensive morphometric analysis.

Vesselucida® 360

Automatically reconstruct microvascular networks in a 3D environment.



Ground-breaking light sheet microscope system for cleared specimens.