Scientists at Western Sydney University used Stereo Investigator and Neurolucida 360 to quantify cells in a mouse model of neuroinflammation after feeding mice two different curcumin formulations.
Some inflammation is normal in a healthy mammalian brain. But as the brain ages, processes can break down, leading to chronic neuroinflammation. This can develop into Alzheimer’s disease, dementia, and other neurodegenerative diseases.
Scientists at Prof. Gerald Muench’s lab, at Western Sydney University say that curcumin, a substance in the spice turmeric, has the potential to lower inflammation in the brain.
In two recent studies, the researchers, led by Dr. Erika Gyengesi, used Stereo Investigator and Neurolucida 360 to reconstruct and quantify glial cells in the brains of mice after feeding them two different curcumin formulations.
“MBF Bioscience’s software helped us immensely to differentiate and follow the changes caused by chronic microglia activation in various areas of the brain during aging, but also to quantify the effects of different modified curcumin products, which otherwise would have been impossible,” said Dr. Gyengesi.
In a study published February, 2020 in Scientific Reports: “Effects of a solid lipid curcumin particle formulation on chronic activation of microglia and astroglia in the GFAP-IL6 mouse model,” (Ullah et al, 2020), the researchers describe positive results after feeding GFAP-IL6 mice — a mouse model of chronic neuroinflammation — 500 ppm of Longvida®Optimised Curcumin (LC) over a course of six months.

Effect of MC on the morphological characteristics of microglial cells in the hippocampus. (A) Morphological assessment of reactive and non-reactive microglia in the hippocampus. (B–H) Microglia in the inflamed mice have significantly larger soma area, soma perimeter and processes compared with the WT mice. High dose MC significantly reduced soma area and soma perimeter compared with GFAP-IL6 mice. However, the same high dose MC significantly increased the number of nodes compared with the GFAP-Il6 mice. It has no effect on the convex area, convex perimeter, dendritic length and number of processes. Significance = *p < 0.05, **p < 0.001, ***p < 0.0001, ****p < 0.0001.
Stereological analysis of the mouse brains revealed lower levels of activated microglia in the hippocampus (26 percent less) and in the cerebellum (48 percent less) in GFAP-IL6 mice that were fed the curcumin diet, compared to GFAP-IL6 mice fed a normal diet. They also quantified astrocytes — another cell type activated in response to neuroinflammation, finding decreased levels in the hippocampus (30 percent less). TSPO+ cells — another marker of brain inflammation, decreased as well (by 24 percent in the hippocampus and 31 percent in the cerebellum) in the experimental mice compared to controls.
Read More