[6] Wirak GS, Gabel CV, Connor CW. Isoflurane exposure in juvenile Caenorhabditis elegans causes persistent changes in neuron dynamics. Anesthesiology 2020;133(3):569-582. doi: 10.1097/ALN.0000000000003335.
[7] Benbow SJ, Strovas TJ, Darvas M, Saxton A, Kraemer BC. Synergistic toxicity between tau and amyloid drives neuronal dysfunction and neurodegeneration in transgenic C. elegans. Hum Mol Genet 2020;29(3):495-505. doi: 10.1093/hmg/ddz319.
[8] Cogliati S, Clementi V, Francisco M, Crespo C, Argañaraz F, Grau R. Bacillus subtilis delays neurodegeneration and behavioral impairment in the Alzheimer’s disease model Caenorhabditis elegans. J Alzheimers Dis 2020;73(3):1035-1052. doi: 10.3233/JAD-190837.
[9] Buddell T, Friedman V, Drozd CJ, Quinn CC. An autism-causing calcium channel variant functions with selective autophagy to alter axon targeting and behavior. PLoS Genet 2019;15(12):e1008488. doi: 10.1371/journal.pgen.1008488.
[10] Wong WR, Brugman KI, Maher S, Oh JY, Howe K, Kato M, Sternberg PW. Autism-associated missense genetic variants impact locomotion and neurodevelopment in Caenorhabditis elegans. Hum Mol Genet 2019;28(13):2271-2281. doi: 10.1093/hmg/ddz051.
[11] Dwyer DS, Awatramani P, Thakur R, Seeni R, Aamodt EJ. Social feeding in Caenorhabditis elegans is modulated by antipsychotic drugs and calmodulin and may serve as a protophenotype for asociality. Neuropharmacology 2015;92:56-62. doi: 10.1016/j.neuropharm.2014.12.027.
[12] Monte GG, Nani JV, de Almeida Campos MR, Dal Mas C, Marins LAN, Martins LG, Tasic L, Mori MA, Hayashi MAF. Impact of nuclear distribution element genes in the typical and atypical antipsychotics effects on nematode Caenorhabditis elegans: Putative animal model for studying the pathways correlated to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2019;92:19-30. doi: 10.1016/j.pnpbp.2018.12.010.
[13] Angstman NB, Frank HG, Schmitz C. Hypothermia ameliorates blast-related lifespan reduction of C. elegans. Sci Rep 2018;8(1):10549. doi: 10.1038/s41598-018-28910-z.
[14] Kunert JM, Maia PD, Kutz JN. Functionality and robustness of injured connectomic dynamics in C. elegans: linking behavioral deficits to neural circuit damage. PLoS Comput Biol 2017;13(1):e1005261. doi: 10.1371/journal.pcbi.1005261.
[15] Avila D, Helmcke K, Aschner M. The Caenorhabiditis elegans model as a reliable tool in neurotoxicology. Hum Exp Toxicol 2012;31(3):236-243. doi: 10.1177/0960327110392084.
[16] Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, Yip KY, Robilotto R, Rechtsteiner A, Ikegami K, Alves P, Chateigner A, Perry M, Morris M, Auerbach RK, Feng X, Leng J, Vielle A, Niu W, Rhrissorrakrai K, Agarwal A, Alexander RP, Barber G, Brdlik CM, Brennan J, Brouillet JJ, Carr A, Cheung MS, Clawson H, Contrino S, Dannenberg LO, Dernburg AF, Desai A, Dick L, Dosé AC, Du J, Egelhofer T, Ercan S, Euskirchen G, Ewing B, Feingold EA, Gassmann R, Good PJ, Green P, Gullier F, Gutwein M, Guyer MS, Habegger L, Han T, Henikoff JG, Henz SR, Hinrichs A, Holster H, Hyman T, Iniguez AL, Janette J, Jensen M, Kato M, Kent WJ, Kephart E, Khivansara V, Khurana E, Kim JK, Kolasinska-Zwierz P, Lai EC, Latorre I, Leahey A, Lewis S, Lloyd P, Lochovsky L, Lowdon RF, Lubling Y, Lyne R, MacCoss M, Mackowiak SD, Mangone M, McKay S, Mecenas D, Merrihew G, Miller DM 3rd, Muroyama A, Murray JI, Ooi SL, Pham H, Phippen T, Preston EA, Rajewsky N, Rätsch G, Rosenbaum H, Rozowsky J, Rutherford K, Ruzanov P, Sarov M, Sasidharan R, Sboner A, Scheid P, Segal E, Shin H, Shou C, Slack FJ, Slightam C, Smith R, Spencer WC, Stinson EO, Taing S, Takasaki T, Vafeados D, Voronina K, Wang G, Washington NL, Whittle CM, Wu B, Yan KK, Zeller G, Zha Z, Zhong M, Zhou X; modENCODE Consortium, Ahringer J, Strome S, Gunsalus KC, Micklem G, Liu XS, Reinke V, Kim SK, Hillier LW, Henikoff S, Piano F, Snyder M, Stein L, Lieb JD, Waterston RH. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 2010;330(6012):1775-1787. doi: 10.1126/science.1196914.
[17] Jorgensen EM, Mango SE. The art and design of genetic screens: caenorhabditis elegans. Nat Rev Genet 2002;3(5):356-369. doi: 10.1038/nrg794.
[18] White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1986;314(1165):1-340. doi: 10.1098/rstb.1986.0056.
[19] Chatterjee N, Sinha S. Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans. Prog Brain Res 2008;168:145-153. doi: 10.1016/S0079-6123(07)68012-1.
[20] Boyd WA, Smith MV, Kissling GE, Freedman JH. Medium- and high-throughput screening of neurotoxicants using C. elegans. Neurotoxicol Teratol 2010;32(1):68-73. doi: 10.1016/j.ntt.2008.12.004.
[21] Griffin EF, Caldwell KA, Caldwell GA. Genetic and pharmacological discovery for Alzheimer’s disease using Caenorhabditis elegans. ACS Chem Neurosci 2017;8(12):2596-2606. doi: 10.1021/acschemneuro.7b00361.
[22] Ma L, Zhao Y, Chen Y, Cheng B, Peng A, Huang K. Caenorhabditis elegans as a model system for target identification and drug screening against neurodegenerative diseases. Eur J Pharmacol 2018;819:169-180. doi: 10.1016/j.ejphar.2017.11.051.
[23] Maglioni S, Arsalan N, Ventura N. C. elegans screening strategies to identify pro-longevity interventions. Mech Ageing Dev 2016;157:60-69. doi: 10.1016/j.mad.2016.07.010.
[24] Dwyer DS. Crossing the worm-brain barrier by using Caenorhabditis elegans to explore fundamentals of human psychiatric illness. Mol Neuropsychiatry 2018;3(3):170-179. doi: 10.1159/000485423.
[25] de Bono M, Maricq AV. Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 2005;28:451-501. doi: 10.1146/annurev.neuro.27.070203.144259.
[26] Schafer WR. Deciphering the neural and molecular mechanisms of C. elegans behavior. Curr Biol 2005;15(17):R723-R729. doi: 10.1016/j.cub.2005.08.020.
[27] The Scientist Staff. Brains in action. Available at https://www.the-scientist.com/features/brains-in-action-38044 (accessed on 19 October 2021).
[28] http://wbg.wormbook.org/the-worm-lab-project/all-labs/ (accessed on 19 October 2021).
[29] Buckingham SD, Sattelle DB. Strategies for automated analysis of C. elegans locomotion. Invert Neurosci 2008;8(3):121-131. doi: 10.1007/s10158-008-0077-3.
[30] Hart AC. Behavior. Available at http://wormbook.org/chapters/www_behavior/behavior.html (accessed on 19 October 2021).
[31] Boyd WA, Smith MV, Kissling GE, Freedman JH. Medium- and high-throughput screening of neurotoxicants using C. elegans. Neurotoxicol Teratol 2010;32(1):68-73. coi: 10.1016/j.ntt.2008.12.004.
[32] Roussel N, Morton CA, Finger FP, Roysam B. A computational model for C. elegans locomotory behavior: application to multiworm tracking. IEEE Trans Biomed Eng 2007;54(10):1786-1797. doi: 10.1109/TBME.2007.894981.
[33] Roussel N, Sprenger J, Tappan SJ, Glaser JR. Robust tracking and quantification of C. elegans body shape and locomotion through coiling, entanglement, and omega bends. Worm 2015;3(4):e982437. doi: 10.4161/21624054.2014.982437.
[34] Gong J, Yuan Y, Ward A, Kang L, Zhang B, Wu Z, Peng J, Feng Z, Liu J, Xu XZS. The C. elegans taste receptor homolog LITE-1 is a photoreceptor. Cell 2016;167(5):1252-1263.e10. doi: 10.1016/j.cell.2016.10.053.
[35] Flores BN, Li X, Malik AM, Martinez J, Beg AA, Barmada SJ. An intramolecular salt bridge linking TDP43 RNA binding, protein stability, and TDP43-dependent neurodegeneration. Cell Rep 2019;27(4):1133-1150.e8. doi: 10.1016/j.celrep.2019.03.093.
[36] Li G, Gong J, Liu J, Liu J, Li H, Hsu AL, Liu J, Xu XZS. Genetic and pharmacological interventions in the aging motor nervous system slow motor aging and extend life span in C. elegans. Sci Adv 2019;5(1):eaau5041. doi: 10.1126/sciadv.aau5041.
[37] Hsueh YP, Gronquist MR, Schwarz EM, Nath RD, Lee CH, Gharib S, Schroeder FC, Sternberg PW. Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. Elife 2017;6:e20023. doi: 10.7554/eLife.20023.
[38] Salzberg Y, Pechuk V, Gat A, Setty H, Sela S, Oren-Suissa M. Synaptic protein degradation controls sexually dimorphic circuits through regulation of DCC/UNC-40. Curr Biol 2020;30(21):4128-4141.e5. doi: 10.1016/j.cub.2020.08.002.
[39] Turek M, Banasiak K, Piechota M, Shanmugam N, Macias M, Śliwińska MA, Niklewicz M, Kowalski K, Nowak N, Chacinska A, Pokrzywa W. Muscle-derived exophers promote reproductive fitness. EMBO Rep 2021;22(8):e52071. doi: 10.15252/embr.202052071.