The WormLab Imaging System is a complete, scalable solution for automated imaging and quantitative analysis of the behavior of C. elegans and other nematodes. We worked closely with world leading C. elegans researchers to develop a unique worm tracking system that is intuitive and easy to use so you spend less time on set-up and maintenance and more time focused on your research.
The WormLab Imaging System is turn-key hardware and software for imaging and analyzing the behavior of C. elegans—just add worms. Generate high resolution videos optimized for analysis using WormLab’s patented worm-tracking technology with access dozens of detailed metrics including speed, direction, distance travelled. Fully characterize dynamic changes in posture, amplitude of sinusoidal movement and accurately quantify complex movements such as omega bends, coiling, self-overlap, swimming, and thrashing. Easily and efficiently investigate subtle effects on social interactions such as aggregation, social foraging and mating.
The optimized WormLab video acquisition system fully automates optogenetic and mechanosensation assays so that you can easily correlate behavior with programmable stimuli. This also frees up lab resources considerably while improving the efficiency and reproducibility of worm-behavior assays. Easy image acquisition and analysis using the intuitive WormLab software interface enables you to start working immediately.
WormLab has been developed with support from the National Institute of Environmental Health Sciences (NIEHS)
System Requirements for Microsoft Windows or Apple macOS |
---|
Windows 10 64-bit is required. The recommended configuration includes at least 16GB RAM, an Intel Core (i5,i7,i9) or Xeon processor, adequate hard disk space for video files (at least 500GB recommended) and an internet connection for activation. |
MacOS 10.9 or later is required. The recommended configuration includes at least 16GB RAM, an Intel Core (i5,i7,i9), Intel Xeon or Apple M1 processor, adequate hard disk space for video files (at least 500GB recommended) and an internet connection for activation. |
Case Study: Ludwig-Maximilians University of Munich
Researchers Study Blast Effects on C. elegans
>> Learn More
Case Study: Columbia University
Researchers Identified Mutations in a TRP Ion Channel Cause Dopaminergic Cell Loss in C. elegans
>> Learn More
Case Study: East Carolina University
Scientists Reveal that Nicotine Addiction is Heritable in C. elegans
>> Learn More
Case Study: Université de Montréal
Researchers are characterizing a novel target to combat obesity
>> Learn More
Aquino Nunez, W., B. Combs, et al. (2022). "Age-dependent accumulation of tau aggregation in Caenorhabditis elegans." Frontiers in Aging 3. https://doi.org/10.3389/fragi.2022.928574
Latimer, C. S., J. G. Stair, et al. (2022). "TDP-43 promotes tau accumulation and selective neurotoxicity in bigenic Caenorhabditis elegans." Disease Models & Mechanisms 15(4). https://doi.org/10.1242/dmm.049323
Gildea, H. K., P. A. Frankino, et al. (2022). "Glia of <i>C. elegans</i> coordinate a protective organismal heat shock response independent of the neuronal thermosensory circuit." Science Advances 8(49): eabq3970. DOI: 10.1126/sciadv.abq3970
Liao, C.-P., Y.-C. Chiang, et al. (2022). "Neurophysiological basis of stress-induced aversive memory in the nematode Caenorhabditis elegans." Current Biology. https://doi.org/10.1016/j.cub.2022.11.012
Liudkovska, V., P. S. Krawczyk, et al. (2022). "TENT5 cytoplasmic noncanonical poly(A) polymerases regulate the innate immune response in animals." Science Advances 8(46): eadd9468. DOI: 10.1126/sciadv.add9468
Wang, C., B. Wang, et al. (2022). "A conserved megaprotein-based molecular bridge critical for lipid trafficking and cold resilience." Nature Communications 13(1): 6805. https://doi.org/10.1038/s41467-022-34450-y
Li, L., H. Liu, et al. (2022). "CASK and FARP localize two classes of post-synaptic ACh receptors thereby promoting cholinergic transmission." PLOS Genetics 18(10): e1010211. https://doi.org/10.1371/journal.pgen.1010211
Navarro-Hortal, M. D., J. M. Romero-Márquez, et al. (2022). "Amyloid β-but not Tau-induced neurotoxicity is suppressed by Manuka honey via HSP-16.2 and SKN-1/Nrf2 pathways in an in vivo model of Alzheimer's disease." Food & Function. DOI https://doi.org/10.1039/D2FO01739C
AlOkda, A. and J. M. Van Raamsdonk (2022). Effect of DMSO on lifespan and physiology in C. elegans: Implications for use of DMSO as a solvent for compound delivery, microPublication Biology. 10.17912/micropub.biology.000634.
Mattison, K. A., G. Tossing, et al. (2022). "ATP6V0C variants impair vacuolar V-ATPase causing a neurodevelopmental disorder often associated with epilepsy." Brain: awac330. https://doi.org/10.1093/brain/awac330
da Silva, A. F., L. M. Cordeiro, et al. (2022). "JM-20 affects GABA neurotransmission in Caenorhabditis elegans." NeuroToxicology. https://doi.org/10.1016/j.neuro.2022.08.012
da Silva, T. C., T. L. da Silveira, et al. (2022). "Exogenous Adenosine Modulates Behaviors and Stress Response in Caenorhabditis elegans." Neurochemical Research. https://doi.org/10.1007/s11064-022-03727-5
Chen, Y., Q. Qin, et al. (2022). "Carnosol Reduced Pathogenic Protein Aggregation and Cognitive Impairment in Neurodegenerative Diseases Models via Improving Proteostasis and Ameliorating Mitochondrial Disorders." Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.2c02665
Wang, C., L. Zeng, et al. (2022). "Decabromodiphenyl ethane induces locomotion neurotoxicity and potential Alzheimer’s disease risks through intensifying amyloid-beta deposition by inhibiting transthyretin/transthyretin-like proteins." Environment International 168: 107482. https://doi.org/10.1016/j.envint.2022.107482
Zaroubi, L., I. Ozugergin, et al. "The Ubiquitous Soil Terpene Geosmin Acts as a Warning Chemical." Applied and Environmental Microbiology 0(0): e00093-00022. https://doi.org/10.1128/aem.00093-22
Romero-Márquez, J. M., M. D. Navarro-Hortal, et al. (2022). "An oleuropein rich-olive (Olea europaea L.) leaf extract reduces β-amyloid and tau proteotoxicity through regulation of oxidative- and heat shock-stress responses in Caenorhabditis elegans." Food and Chemical Toxicology 162: 112914. https://doi.org/10.1016/j.fct.2022.112914
Chiang, Y.-C., C.-P. Liao, et al. (2022). "A serotonergic circuit regulates aversive associative learning under mitochondrial stress in C. elegans." Proceedings of the National Academy of Sciences 119(11): e2115533119. https://doi.org/10.1073/pnas.2115533119
Gaeta, A. L., J. B. Nourse, et al. (2022). "Systemic RNA interference-defective (SID) genes modulate dopaminergic neurodegeneration in <em>C. elegans</em>." bioRxiv: 2022.2002.2023.481573. 10.1101/2022.02.23.481573
Hagar, S., S. Yehuda, et al. (2022). Nature Portfolio. 10.21203/rs.3.rs-1345880/v1
Yan, Z., X. Cheng, et al. (2022). "Sexually Dimorphic Neurotransmitter Release at the Neuromuscular Junction in Adult Caenorhabditis elegans." Frontiers in Molecular Neuroscience 14. https://doi.org/10.3389/fnmol.2021.780396
Chou, S.-H., Y.-J. Chen, et al. (2022). "A role for dopamine in C. elegans avoidance behavior induced by mitochondrial stress." Neuroscience Research. https://doi.org/10.1016/j.neures.2022.01.005
Possik, E., C. Schmitt, et al. (2022). "Phosphoglycolate phosphatase homologs act as glycerol-3-phosphate phosphatase to control stress and healthspan in C. elegans." Nature Communications 13(1): 177. https://doi.org/10.1038/s41467-021-27803-6
Wang, C., Y. Li, et al. (2022). "Tris(1,3-dichloro-2-propyl) phosphate reduces longevity through a specific microRNA-mediated DAF-16/FoxO in an unconventional insulin/insulin-like growth factor‑1 signaling pathway." Journal of Hazardous Materials 425: 128043. https://doi.org/10.1016/j.jhazmat.2021.128043
Raffaele, M., K. Kovacovicova, et al. (2021). "Nociceptin/orphanin FQ opioid receptor (NOP) selective ligand MCOPPB links anxiolytic and senolytic effects." GeroScience. https://doi.org/10.1007/s11357-021-00487-y
Palumbos, S. D., R. Skelton, et al. (2021). "cAMP controls a trafficking mechanism that maintains the neuron specificity and subcellular placement of electrical synapses." Developmental Cell. https://doi.org/10.1016/j.devcel.2021.10.011
Chai, C. M., W. Chen, et al. (2021). "A conserved behavioral role for a nematode interneuron neuropeptide receptor." Genetics(iyab198). https://doi.org/10.1093/genetics/iyab198
Gaur, A. V. and R. Agarwal (2021). "Risperidone Induced Alterations in Feeding and Locomotion Behavior of Caenorhabditis elegans." Current Research in Toxicology. https://doi.org/10.1016/j.crtox.2021.10.003
Cuentas-Condori, A., B. Mulcahy, et al. "C. elegans neurons have functional dendritic spines." eLife 8: e47918
C1 - eLife 2019;8:e47918. 10.7554/eLife.47918
Doser, R. L., G. C. Amberg, et al. "Reactive Oxygen Species Modulate Activity-Dependent AMPA Receptor Transport in C. elegans." The Journal of Neuroscience 40(39): 7405. https://doi.org/10.1523/JNEUROSCI.0902-20.2020
Seo, Y., S. Kingsley, et al. "Metabolic shift from glycogen to trehalose promotes lifespan and healthspan in Caenorhabditis elegans.." Proceedings of the National Academy of Sciences 115(12): E2791. https://doi.org/10.1073/pnas.1714178115
Tahernia, M., M. Mohammadifar, et al. "Paper-Supported High-Throughput 3D Culturing, Trapping, and Monitoring of Caenorhabditis Elegans." Micromachines 11(1). https://doi.org/10.3390/mi11010099
Williams, A. B., F. Heider, et al. "Restoration of Proteostasis in the Endoplasmic Reticulum Reverses an Inflammation-Like Response to Cytoplasmic DNA in Caenorhabditis elegans." Genetics 212(4): 1259. https://doi.org/10.1534/genetics.119.302422
Martinez, B. A., D. A. Petersen, et al. "Dysregulation of the Mitochondrial Unfolded Protein Response Induces Non-Apoptotic Dopaminergic Neurodegeneration in C. elegans; Models of Parkinson's Disease." The Journal of Neuroscience 37(46): 11085. https://doi.org/10.1523/JNEUROSCI.1294-17.2017
Pereira, A. G., X. Gracida, et al. "C. elegans aversive olfactory learning generates diverse intergenerational effects." Journal of Neurogenetics 34(3-4): 378-388. https://doi.org/10.1080/01677063.2020.1819265
Rollins, J. A., A. C. Howard, et al. "Assessing Health Span in Caenorhabditis elegans: Lessons From Short-Lived Mutants." The Journals of Gerontology: Series A 72(4): 473-480. https://doi.org/10.1093/gerona/glw248
Soh, M. S., X. Cheng, et al. "Disruption of genes associated with Charcot-Marie-Tooth type 2 lead to common behavioural, cellular and molecular defects in Caenorhabditis elegans." PLOS ONE 15(4): e0231600. https://doi.org/10.1371/journal.pone.0231600
Angstman, N., Frank, H.-G., & Schmitz, C. (2016). Advanced behavioral analyses show that the presence of food causes subtle changes in C. elegans movement. [Original Research]. Frontiers in Behavioral Neuroscience, 10. doi: 10.3389/fnbeh.2016.00060. http://www.frontiersin.org/Journal/Abstract.aspx?s=99&name=behavioral_ne...
Angstman, N. B., Kiessling, M. C., Frank, H.-G., & Schmitz, C. (2015). High interindividual variability in dose-dependent reduction in speed of movement after exposing C. elegans to shock waves. Frontiers in Behavioral Neuroscience, 9, 12. doi: 10.3389/fnbeh.2015.00012. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319468/
Ao, Y., Zeng, K., Yu, B., Miao, Y., Hung, W., Yu, Z., . . . Gao, S. (2019). An Upconversion Nanoparticle Enables Near Infrared-Optogenetic Manipulation of the Caenorhabditis elegans Motor Circuit. ACS Nano. doi: 10.1021/acsnano.8b09270. https://doi.org/10.1021/acsnano.8b09270
Bai, J., Farias-Pereira, R., Jang, M., Zhang, Y., Lee, S. M., Kim, Y.-S., . . . Kim, K.-H. (2021). Azelaic Acid Promotes Caenorhabditis elegans Longevity at Low Temperature Via an Increase in Fatty Acid Desaturation. Pharmaceutical Research. doi: 10.1007/s11095-020-02975-w. https://doi.org/10.1007/s11095-020-02975-w
Bai, J., Farias-Pereira, R., Zhang, Y., Jang, M., Park, Y., & Kim, K.-H. (2020). C. elegans ACAT regulates lipolysis and its related lifespan in fasting through modulation of the genes in lipolysis and insulin/IGF-1 signaling. BioFactors, n/a(n/a). doi: 10.1002/biof.1666. https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/biof.1666
Barbagallo, B., Philbrook, A., Touroutine, D., Banerjee, N., Oliver, D., Lambert, C. M., & Francis, M. M. (2017). Excitatory neurons sculpt GABAergic neuronal connectivity in the C. elegans motor circuit. Development, 144(10), 1807. doi: 10.1242/dev.141911. http://dev.biologists.org/content/144/10/1807.abstract
Barbagallo, B., Philbrook, A., Touroutine, D., Banerjee, N., Oliver, D., Lambert, C. M., & Francis, M. M. (2017). Excitatory neurons sculpt GABAergic neuronal connectivity in the C. elegans motor circuit. Development, 144(10), 1807-1819. doi: 10.1242/dev.141911. https://dev.biologists.org/content/develop/144/10/1807.full.pdf
Benbow, S. J., Strovas, T. J., Darvas, M., Saxton, A., & Kraemer, B. C. (2020). Synergistic toxicity between tau and amyloid drives neuronal dysfunction and neurodegeneration in transgenic C. elegans. Human Molecular Genetics. doi: 10.1093/hmg/ddz319. https://doi.org/10.1093/hmg/ddz319
Bhattacharya, R., Touroutine, D., Barbagallo, B., Climer, J., Lambert, C. M., Clark, C. M., . . . Francis, M. M. (2014). A Conserved Dopamine-Cholecystokinin Signaling Pathway Shapes Context–Dependent Caenorhabditis elegans Behavior. PLoS Genet, 10(8), e1004584. doi: 10.1371/journal.pgen.1004584. http://dx.doi.org/10.1371%2Fjournal.pgen.1004584
Brosnan, C. A., Palmer, A. J., & Zuryn, S. (2021). Cell-type-specific profiling of loaded miRNAs from Caenorhabditis elegans reveals spatial and temporal flexibility in Argonaute loading. Nature Communications, 12(1), 2194. doi: 10.1038/s41467-021-22503-7. https://doi.org/10.1038/s41467-021-22503-7
Brugman, K. I., Kato, M., Oh, J. Y., Sternberg, P. W., Maher, S., Wong, W.-R., & Howe, K. (2019). Autism-associated missense genetic variants impact locomotion and neurodevelopment in Caenorhabditis elegans. doi: 10.1093/hmg/ddz051. https://doi.org/10.1093/hmg/ddz051
Chen, N., Li, J., Li, D., Yang, Y., & He, D. (2014). Chronic Exposure to Perfluorooctane Sulfonate Induces Behavior Defects and Neurotoxicity through Oxidative Damages, In Vivo and In Vitro PLoS ONE, 9(11), e113453. doi: 10.1371/journal.pone.0113453. http://dx.doi.org/10.1371%2Fjournal.pone.0113453
Choi, M.-K., Liu, H., Wu, T., Yang, W., & Zhang, Y. (2020). NMDAR-mediated modulation of gap junction circuit regulates olfactory learning in C. elegans. Nature Communications, 11(1), 3467. doi: 10.1038/s41467-020-17218-0. https://doi.org/10.1038/s41467-020-17218-0
Chute, C. D., DiLoreto, E. M., Zhang, Y. K., Reilly, D. K., Rayes, D., Coyle, V. L., . . . Srinivasan, J. (2019). Co-option of neurotransmitter signaling for inter-organismal communication in C. elegans. Nature Communications, 10(1), 3186. doi: 10.1038/s41467-019-11240-7. https://doi.org/10.1038/s41467-019-11240-7
Császár, N. B. M., Angstman, N. B., Milz, S., Sprecher, C. M., Kobel, P., Farhat, M., . . . Schmitz, C. (2015). Radial Shock Wave Devices Generate Cavitation. PLoS ONE, 10(10), e0140541. doi: 10.1371/journal.pone.0140541. http://dx.doi.org/10.1371%2Fjournal.pone.0140541
Farias-Pereira, R., Kim, E., & Park, Y. (2019). Cafestol increases fat oxidation and energy expenditure in Caenorhabditis elegans via DAF-12-dependent pathway. Food Chemistry, 125537. doi: https://doi.org/10.1016/j.foodchem.2019.125537. http://www.sciencedirect.com/science/article/pii/S0308814619316565
Farias-Pereira, R., Oshiro, J., Kim, K.-H., & Park, Y. (2018). Green coffee bean extract and 5-O-caffeoylquinic acid regulate fat metabolism in Caenorhabditis elegans. Journal of Functional Foods, 48, 586-593. doi: https://doi.org/10.1016/j.jff.2018.07.049. http://www.sciencedirect.com/science/article/pii/S1756464618303876
Farias-Pereira, R., Park, C.-S., & Park, Y. (2020). Kahweol Reduces Food Intake of Caenorhabditis elegans. Journal of Agricultural and Food Chemistry. doi: 10.1021/acs.jafc.0c03030. https://doi.org/10.1021/acs.jafc.0c03030
Farias-Pereira, R., Savarese, J., Yue, Y., Lee, S.-H., & Park, Y. (2019). Fat-lowering effects of isorhamnetin are via NHR-49-dependent pathway in Caenorhabditis elegans. Current Research in Food Science. doi: https://doi.org/10.1016/j.crfs.2019.11.002. http://www.sciencedirect.com/science/article/pii/S2665927119300103
Faten A Taki, X. P., Baohong Zhang. (2013). Nicotine Exposure Caused Significant Transgenerational Heritable Behavioral Changes In Caenorhabditis Elegans. EXCLI Journal, 12, 793-806. doi. http://www.researchgate.net/publication/256496981_NICOTINE_EXPOSURE_CAUS...
Flores, B. N., Li, X., Malik, A. M., Martinez, J., Beg, A. A., & Barmada, S. J. (2019). An Intramolecular Salt Bridge Linking TDP43 RNA Binding, Protein Stability, and TDP43-Dependent Neurodegeneration. Cell Reports, 27(4), 1133-1150.e1138. doi: https://doi.org/10.1016/j.celrep.2019.03.093. http://www.sciencedirect.com/science/article/pii/S2211124719304322
Fouad, A. D., Teng, S., Mark, J. R., Liu, A., Alvarez-Illera, P., Ji, H., . . . Fang-Yen, C. (2018). Distributed rhythm generators underlie Caenorhabditis elegans forward locomotion. eLife, 7, e29913. doi: 10.7554/eLife.29913. https://doi.org/10.7554/eLife.29913
Fry, A. L., Laboy, J. T., & Norman, K. R. (2014). VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans. [Article]. Nat Commun, 5. doi: 10.1038/ncomms6579. http://dx.doi.org/10.1038/ncomms6579
Gao, S., Guan, S. A., Fouad, A. D., Meng, J., Kawano, T., Huang, Y.-C., . . . Lu, Y. (2018). Excitatory motor neurons are local oscillators for backward locomotion. eLife, 7. doi. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780044/
Gong, J., Yuan, Y., Ward, A., Kang, L., Zhang, B., Wu, Z., . . . Xu, X. Z. S. (2016). The C. elegans Taste Receptor Homolog LITE-1 Is a Photoreceptor. Cell, 167(5), 1252-1263.e1210. doi: http://dx.doi.org/10.1016/j.cell.2016.10.053. http://www.sciencedirect.com/science/article/pii/S0092867416315185
Goya, M. E., Xue, F., Sampedro-Torres-Quevedo, C., Arnaouteli, S., Riquelme-Dominguez, L., Romanowski, A., . . . Doitsidou, M. (2020). Probiotic Bacillus subtilis Protects against α-Synuclein Aggregation in C. elegans. Cell Reports, 30(2), 367-380.e367. doi: https://doi.org/10.1016/j.celrep.2019.12.078. http://www.sciencedirect.com/science/article/pii/S2211124719317437
Han, B., Bellemer, A., & Koelle, M. R. (2015). An Evolutionarily Conserved Switch in Response to GABA Affects Development and Behavior of the Locomotor Circuit of Caenorhabditis elegans. Genetics, 199(4), 1159-1172. doi: 10.1534/genetics.114.173963. http://www.genetics.org/content/199/4/1159.abstract
Hardaway, J. A., Sturgeon, S. M., Snarrenberg, C. L., Li, Z., Xu, X. S., Bermingham, D. P., . . . Carvelli, L. (2015). Glial Expression of the Caenorhabditis elegans Gene swip-10 Supports Glutamate Dependent Control of Extrasynaptic Dopamine Signaling. The Journal of Neuroscience, 35(25), 9409-9423. doi. http://www.jneurosci.org/content/35/25/9409.short
Hill, T. (2017). Ephrin Receptors, AIY Interneuron Physiology, and Behavior. doi. http://digitalcommons.kennesaw.edu/integrbiol_etd/22/
Hsueh, Y.-P., Gronquist, M. R., Schwarz, E. M., Nath, R. D., Lee, C.-H., Gharib, S., . . . Sternberg, P. W. (2017). Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. [JOUR]. eLife, 6, e20023. doi: 10.7554/eLife.20023. https://dx.doi.org/10.7554/eLife.20023
Kosmaczewski, S. G., Han, S. M., Han, B., Irving Meyer, B., Baig, H. S., Athar, W., . . . Hammarlund, M. (2015). RNA ligation in neurons by RtcB inhibits axon regeneration. Proceedings of the National Academy of Sciences, 112(27), 8451-8456. doi: 10.1073/pnas.1502948112. http://www.pnas.org/content/112/27/8451.abstract
Kow, R. L., Strovas, T. J., McMillan, P. J., Jacobi, A. M., Behlke, M. A., Saxton, A. D., . . . Kraemer, B. C. (2021). Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes. Neurobiology of Disease, 147, 105148. doi: https://doi.org/10.1016/j.nbd.2020.105148. http://www.sciencedirect.com/science/article/pii/S096999612030423X
Leung, H.-H., Liang, C., Marcotte, D., & McEachern, H. (2015). Effect of salinity on the locomotion of Caenorhabditis elegans. The Expedition, 4. doi. http://ojs.library.ubc.ca/index.php/expedition/article/view/186394
Li, G., Gong, J., Liu, J., Liu, J., Li, H., Hsu, A.-L., . . . Xu, X. Z. S. (2019). Genetic and pharmacological interventions in the aging motor nervous system slow motor aging and extend life span in C. elegans. Science Advances, 5(1), eaau5041. doi: 10.1126/sciadv.aau5041. http://advances.sciencemag.org/content/5/1/eaau5041.abstract
Li, J., Li, D., Yang, Y., Xu, T., Li, P., & He, D. (2015). Acrylamide induces locomotor defects and degeneration of dopamine neurons in Caenorhabditis elegans. Journal of Applied Toxicology, n/a-n/a. doi: 10.1002/jat.3144. http://dx.doi.org/10.1002/jat.3144
Liu, H., Yang, W., Wu, T., Duan, F., Soucy, E., Jin, X., & Zhang, Y. (2018). Cholinergic Sensorimotor Integration Regulates Olfactory Steering. Neuron. doi: https://doi.org/10.1016/j.neuron.2017.12.003. https://www.sciencedirect.com/science/article/pii/S0896627317311261
Lyu, S., Doroodchi, A., Xing, H., Sheng, Y., DeAndrade, M. P., Yang, Y., . . . Li, Y. (2020). BTBD9 and dopaminergic dysfunction in the pathogenesis of restless legs syndrome. Brain Structure and Function. doi: 10.1007/s00429-020-02090-x. https://doi.org/10.1007/s00429-020-02090-x
Mah, M. W., Mitha, I., Trinh, A., & Wu, D. (2017). Effect of NaCl concentration on the mid-body movement of Caenorhabditis elegans. The Expedition, 6. doi. http://ojs.library.ubc.ca/index.php/expedition/article/view/189083
Malvar, S., Gontijo, R., Carmo, B., & Cunha, F. (2017). On the kinematics-wave motion of living particles in suspension. Biomicrofluidics, 11(4), 044112. doi. http://aip.scitation.org/doi/abs/10.1063/1.4997715
Martin, J., Oka, Y., Pabla, P., & Qubain, O. (2017). The effect of temperature on the locomotion of Caenorhabditis elegans. The Expedition, 6. doi. http://ojs.library.ubc.ca/index.php/expedition/article/view/189099
Martinez, B. A., Kim, H., Ray, A., Caldwell, G. A., & Caldwell, K. A. (2015). A bacterial metabolite induces glutathione-tractable proteostatic damage, proteasomal disturbances, and PINK1-dependent autophagy in C. elegans. [Original Article]. Cell Death Dis, 6, e1908. doi: 10.1038/cddis.2015.270. http://dx.doi.org/10.1038/cddis.2015.270
Meneely, P. M., Dahlberg, C. L., & Rose, J. K. (2019). Working with Worms: Caenorhabditis elegans as a Model Organism. Current Protocols Essential Laboratory Techniques, 19(1), e35. doi: 10.1002/cpet.35. https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpet.35
Morales-Zavala, F., Arriagada, H., Hassan, N., Velasco, C., Riveros, A., Álvarez, A. R., . . . Kogan, M. J. (2017). Peptide multifunctionalized gold nanorods decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer's disease. Nanomedicine: Nanotechnology, Biology and Medicine. doi: https://doi.org/10.1016/j.nano.2017.06.013. http://www.sciencedirect.com/science/article/pii/S1549963417301211
Nagarajan, A., Ning, Y., Reisner, K., Buraei, Z., Larsen, J. P., Hobert, O., & Doitsidou, M. (2014). Progressive Degeneration of Dopaminergic Neurons through TRP Channel-Induced Cell Death. The Journal of Neuroscience, 34(17), 5738-5746. doi. http://www.jneurosci.org/content/34/17/5738.short
O’Donnell, M. P., Chao, P.-H., Kammenga, J. E., & Sengupta, P. (2018). Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLoS genetics, 14(2), e1007213. doi. https://www.ncbi.nlm.nih.gov/pubmed/29415022
Polli, J. R., Dobbins, D. L., Kobet, R. A., Farwell, M. A., Zhang, B., Lee, M.-H., & Pan, X. (2014). Drug-dependent behaviors and nicotinic acetylcholine receptor expressions in Caenorhabditis elegans following chronic nicotine exposure. NeuroToxicology, (0). doi: http://dx.doi.org/10.1016/j.neuro.2014.12.005. http://www.sciencedirect.com/science/article/pii/S0161813X14002204
Raj, V., Nair, A., & Thekkuveettil, A. (2021). Manganese exposure during early larval stages of C. elegans causes learning disability in the adult stage. Biochemical and Biophysical Research Communications, 568, 89-94. doi: https://doi.org/10.1016/j.bbrc.2021.06.073. https://www.sciencedirect.com/science/article/pii/S0006291X21009955
Ramachandran, S., Banerjee, N., Bhattacharya, R., Touroutine, D., Lambert, C. M., Schoofs, L., . . . Francis, M. M. (2020). A conserved neuropeptide system links head and body motor circuits to enable adaptive behavior. bioRxiv, 2020.2004.2027.064550. doi: 10.1101/2020.04.27.064550. https://www.biorxiv.org/content/biorxiv/early/2020/04/28/2020.04.27.0645...
Ramachandran, S., Banerjee, N., Bhattacharya, R., Touroutine, D., Lambert, C. M., Schoofs, L., . . . Francis, M. M. (2020). A conserved neuropeptide system links head and body motor circuits to enable adaptive behavior. bioRxiv, 2020.2004.2027.064550. doi: 10.1101/2020.04.27.064550. http://biorxiv.org/content/early/2020/04/28/2020.04.27.064550.abstract
Rendon-Nava, D., Mendoza-Espinosa, D., Negron-Silva, G. E., Valdez-Calderon, A., Martinez-Torres, A., Tellez-Arreola, J. L., & Gonzalez-Montiel, S. (2017). Chrysin functionalized NHC-Au(I) complexes: Synthesis, characterization and effects on the nematode Caenorhabditis elegans. [10.1039/C6NJ03299K]. New Journal of Chemistry. doi: 10.1039/c6nj03299k. http://dx.doi.org/10.1039/C6NJ03299K
Rochester, J. D., Tanner, P. C., Sharp, C. S., Andralojc, K. M., & Updike, D. L. (2017). PQN-75 is expressed in the pharyngeal gland cells of Caenorhabditis elegans and is dispensable for germline development. [10.1242/bio.027987]. Biology Open, 6(9), 1355. doi. http://bio.biologists.org/content/6/9/1355.abstract
Roussel, N., Sprenger, J., Tappan, S. J., & Glaser, J. R. (2014). Robust tracking and quantification of C. elegans body shape and locomotion through coiling, entanglement, and omega bends. Worm, 3(4), e982437. doi: 10.4161/21624054.2014.982437. http://dx.doi.org/10.4161/21624054.2014.982437
Sakamoto, K., Soh, Z., Suzuki, M., Iino, Y., & Tsuji, T. (2021). Forward and backward locomotion patterns in C. elegans generated by a connectome-based model simulation. Scientific Reports, 11(1), 13737. doi: 10.1038/s41598-021-92690-2. https://doi.org/10.1038/s41598-021-92690-2
Salzberg, Y., Pechuk, V., Gat, A., Setty, H., Sela, S., & Oren-Suissa, M. (2020). Synaptic Protein Degradation Controls Sexually Dimorphic Circuits through Regulation of DCC/UNC-40. Current Biology. doi: https://doi.org/10.1016/j.cub.2020.08.002. http://www.sciencedirect.com/science/article/pii/S0960982220311568
Shen, P., Hsieh, T.-H., Yue, Y., Sun, Q., Clark, J. M., & Park, Y. (2017). Deltamethrin increases the fat accumulation in 3T3-L1 adipocytes and Caenorhabditis elegans. Food and Chemical Toxicology, 101, 149-156. doi: http://dx.doi.org/10.1016/j.fct.2017.01.015. //www.sciencedirect.com/science/article/pii/S0278691517300236
Shen, P., Kershaw, J. C., Yue, Y., Wang, O., Kim, K.-H., McClements, D. J., & Park, Y. (2018). Effects of conjugated linoleic acid (CLA) on fat accumulation, activity, and proteomics analysis in Caenorhabditis elegans. Food Chemistry, 249, 193-201. doi: https://doi.org/10.1016/j.foodchem.2018.01.017. http://www.sciencedirect.com/science/article/pii/S0308814618300177
Shen, P., Yue, Y., Kim, K.-H., & Park, Y. (2017). Piceatannol Reduces Fat Accumulation in Caenorhabditis elegans. Journal of Medicinal Food. doi: 10.1089/jmf.2016.0179. https://doi.org/10.1089/jmf.2016.0179
Shen, P., Yue, Y., Sun, Q., Kasireddy, N., Kim, K.-H., & Park, Y. (2017). Piceatannol extends the lifespan of Caenorhabditis elegans via DAF-16. BioFactors, n/a-n/a. doi: 10.1002/biof.1346. http://dx.doi.org/10.1002/biof.1346
Shepherd, E., Greiner, S. P., & Bowdridge, S. (2020). Characterization of ovine monocyte activity when cultured with Haemonchus contortus larvae in vitro. Parasite Immunology, n/a(n/a), e12773. doi: 10.1111/pim.12773. https://onlinelibrary.wiley.com/doi/abs/10.1111/pim.12773
Shuai, X., Bailey-Brock, J. H., & Lin, D. T. (2014). Spatio-temporal changes in trophic categories of infaunal polychaetes near the four wastewater ocean outfalls on Oahu, Hawaii. Water Research, (0). doi: http://dx.doi.org/10.1016/j.watres.2014.03.058. http://www.sciencedirect.com/science/article/pii/S0043135414002541
Sun, Q., Yue, Y., Shen, P., Yang, J. J., & Park, Y. (2016). Cranberry Product Decreases Fat Accumulation in Caenorhabditis elegans. Journal of Medicinal Food. doi: 10.1089/jmf.2015.0133. http://dx.doi.org/10.1089/jmf.2015.0133
Sutphin, G. L., Backer, G., Sheehan, S., Bean, S., Corban, C., Liu, T., . . . Aging Research in Genomic Epidemiology Consortium Gene Expression Working, G. (2017). Caenorhabditis elegans orthologs of human genes differentially expressed with age are enriched for determinants of longevity. Aging Cell, n/a-n/a. doi: 10.1111/acel.12595. http://dx.doi.org/10.1111/acel.12595
Téllez-Arreola, J., Valdez-Calderón, A., González-Montiel, S., Martinez-Torres, A., & Hernandez, A. (2019). Some effects of a chrysin bromide-derivative on GABA-A receptors and on Caenorhabditis elegans. Europe PMC. doi. https://europepmc.org/fulltext/ctx/m1023
Vozdek, R., Long, Y., & Ma, D. K. (2018). The receptor tyrosine kinase HIR-1 coordinates HIF-independent responses to hypoxia and extracellular matrix injury. [10.1126/scisignal.aat0138]. Science Signaling, 11(550). doi. http://stke.sciencemag.org/content/11/550/eaat0138.abstract
Weeks, J. C., Roberts, W. M., Leasure, C., Suzuki, B. M., Robinson, K. J., Currey, H., . . . Liachko, N. F. (2018). Sertraline, Paroxetine, and Chlorpromazine Are Rapidly Acting Anthelmintic Drugs Capable of Clinical Repurposing. Scientific Reports, 8(1), 975. doi: 10.1038/s41598-017-18457-w. https://doi.org/10.1038/s41598-017-18457-w
Woldemariam, S., Nagpal, J., Hill, T., Li, J., Schneider, M. W., Shankar, R., . . . Etoile, N. (2019). Using a Robust and Sensitive GFP-Based cGMP Sensor for Real Time Imaging in Intact Caenorhabditis elegans. Genetics, genetics.302392.302019. doi: 10.1534/genetics.119.302392. http://www.genetics.org/content/early/2019/07/22/genetics.119.302392.abs...
Wu, X., Al-Amin, M., Zhao, C., An, F., Wang, Y., Huang, Q., . . . Song, H. (2020). Catechinic acid, a natural polyphenol compound, extends the lifespan of Caenorhabditis elegans via mitophagy pathways. [10.1039/D0FO00694G]. Food & Function. doi: 10.1039/d0fo00694g. http://dx.doi.org/10.1039/D0FO00694G
Wu, X., Mohammad, A., Zhao, C., An, F., Wang, Y., Huang, Q., . . . Song, H. (2020). Catechinic acid, a natural polyphenols compound, extends the lifespan of Caenorhabditis elegans via mitophagy pathways. [10.1039/D0FO00694G]. Food & Function. doi: 10.1039/d0fo00694g. http://dx.doi.org/10.1039/D0FO00694G
Xiao, R., Chun, L., Ronan, Elizabeth A., Friedman, David I., Liu, J., & Xu, X. Z. S. (2015). RNAi Interrogation of Dietary Modulation of Development, Metabolism, Behavior, and Aging in C. elegans. Cell Reports, (0). doi: http://dx.doi.org/10.1016/j.celrep.2015.04.024. http://www.sciencedirect.com/science/article/pii/S2211124715004118
Xu, T., Li, P., Wu, S., Lei, L., & He, D. (2017). Tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloropropyl) phosphate (TCPP) induce locomotor deficits and dopaminergic degeneration in Caenorhabditis elegans. [10.1039/C6TX00306K]. Toxicology Research. doi: 10.1039/c6tx00306k. http://dx.doi.org/10.1039/C6TX00306K
Xu, T., Zhang, M., Hu, J., Li, Z., Wu, T., Bao, J., . . . He, D. (2017). Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements. Chemosphere, 181, 55-62. doi: https://doi.org/10.1016/j.chemosphere.2017.04.068. http://www.sciencedirect.com/science/article/pii/S0045653517306045
Yue, Y., Li, S., Qian, Z., Pereira, R. F., Lee, J., Doherty, J. J., . . . Park, Y. (2020). Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans. Food and Chemical Toxicology, 111695. doi: https://doi.org/10.1016/j.fct.2020.111695. http://www.sciencedirect.com/science/article/pii/S0278691520305858
Yue, Y., Li, S., Qian, Z., Pereira, R. F., Lee, J., Doherty, J. J., . . . Park, Y. (2020). Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans. Food and Chemical Toxicology, 145, 111695. doi: https://doi.org/10.1016/j.fct.2020.111695. http://www.sciencedirect.com/science/article/pii/S0278691520305858
Yue, Y., Li, S., Qian, Z., Pereira, R. F., Lee, J., Doherty, J. J., . . . Park, Y. (2020). Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans. Food and Chemical Toxicology, 145, 111695. doi: https://doi.org/10.1016/j.fct.2020.111695. http://www.sciencedirect.com/science/article/pii/S0278691520305858
Yue, Y., Shen, P., Chang, A. L., Qi, W., Kim, K.-H., Kim, D., & Park, Y. (2019). trans-Trismethoxy resveratrol decreased fat accumulation dependent on fat-6 and fat-7 in Caenorhabditis elegans. Food & Function. doi. https://pubs.rsc.org/en/content/articlelanding/2019/fo/c9fo00778d#!divAb...
Yue, Y., Shen, P., Xu, Y., & Park, Y. (2018). p-Coumaric acid improves oxidative and osmosis stress responses in Caenorhabditis elegans. Journal of the Science of Food and Agriculture, 0(ja). doi: doi:10.1002/jsfa.9288. https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.9288
Yue, Y., Wang, J., Shen, P., Kim, K.-H., & Park, Y. (2021). Methylglyoxal influences development of Caenorhabditis elegans via lin-41-dependent pathway. Food and Chemical Toxicology, 152, 112238. doi: https://doi.org/10.1016/j.fct.2021.112238. https://www.sciencedirect.com/science/article/pii/S0278691521002714
Yue, Y., Wang, J., Shen, P., Kim, K.-H., & Park, Y. (2021). Methylglyoxal influences development of Caenorhabditis elegans via lin-41-dependent pathway. Food and Chemical Toxicology, 152, 112238. doi: https://doi.org/10.1016/j.fct.2021.112238. https://www.sciencedirect.com/science/article/pii/S0278691521002714
Zhang, T., Xie, L., Liu, R., Chang, M., Jin, Q., & Wang, X. (2021). Differentiated 4,4-dimethylsterols from vegetable oils reduce fat deposition dependent on NHR-49/SCD pathway in Caenorhabditis elegans. [10.1039/D1FO00669J]. Food & Function. doi: 10.1039/d1fo00669j. http://dx.doi.org/10.1039/D1FO00669J
Download our product sheet here.
Video courtesy: Ernstrom Lab, Middlebury College
WormLab is used across the globe by the most prestigious laboratories.
WormLab’s utility is underscored by the number of references it receives in the worlds most important scientific publications.
Mattison, K. A., G. Tossing, et al.
“ATP6V0C variants impair vacuolar V-ATPase causing a neurodevelopmental disorder often associated with epilepsy.” BrainView Publication
Zhao, K., Y. Zhang, et al.
“The joint effects of nanoplastics and TBBPA on neurodevelopmental toxicity in Caenorhabditis elegans.” Toxicology ResearchView Publication
Kropp, P. A., P. Rogers, et al.
“Patient-specific variants of NFU1/NFU-1 cause aberrant cholinergic signaling in a Caenorhabditis elegans model of MMDS1.” Dis Model MechView Publication
Liudkovska, V., P. S. Krawczyk, et al.
“TENT5 cytoplasmic noncanonical poly(A) polymerases regulate the innate immune response in animals.” Science AdvancesView Publication
Gildea, H. K., P. A. Frankino, et al.
“Glia of C. elegans coordinate a protective organismal heat shock response independent of the neuronal thermosensory circuit.” Science AdvancesView Publication
Latimer, C. S., J. G. Stair, et al.
“TDP-43 promotes tau accumulation and selective neurotoxicity in bigenic Caenorhabditis elegans.” Disease Models & MechanismsView Publication
Aquino Nunez, W., B. Combs, et al.
“Age-dependent accumulation of tau aggregation in Caenorhabditis elegans.” Frontiers in Aging 3.View Publication
Wang, C., B. Wang, et al.
“A conserved megaprotein-based molecular bridge critical for lipid trafficking and cold resilience.” Nature CommunicationsView Publication
Navarro-Hortal, M. D., J. M. Romero-Márquez, et al.
“Amyloid β-but not Tau-induced neurotoxicity is suppressed by Manuka honey via HSP-16.2 and SKN-1/Nrf2 pathways in an in vivo model of Alzheimer’s disease.” Food & Function.View Publication
The system can record videos with sufficient resolution for tracking using Petri dishes up to 50mm.
Yes! You can purchase a Wormlab software license separately from the complete WormLab Imaging System; it is a cost-effective way to quantify worm behavior from videos acquired using your own camera system. An important consideration for obtaining optimal results with WormLab software is the quality of the video to be analyzed. A solid, high contrast image of the worm on an evenly illuminated background (as achieved with the WormLab Imaging System) is ideal.
Technically, there is no inherent software limit to the number of tracked worms, however, from a practical perspective we suggest tracking fewer than 30 worms in an area sufficiently large to mitigate worm clustering. The WormLab Imaging System supports video acquisition from plates up to 50mm in diameter.
The Wormlab Imaging System is modular by design and can be field upgraded to include stimulus delivery options such as high power LEDs for optogenetic assays or a tapper for mechanosensation assays. General purpose input/output ports are also available for custom applications.
The WormLab Imaging System is designed to produce optimal videos for worm tracking. It features a stable, flat field illumination system and state-of-the-art, high resolution video camera enabling high contrast visualization of the transparent worms. Its enclosure blocks out ambient light that could influence worm behavior, creating an ideal platform for performing reproducible experiments. Fully automate optogenetic and mechanosensation assays eliminates observer bias and improving efficiency.
WormLab was originally designed for tracking C. elegans, however, researchers have used the software for behavioral analysis of other nematodes (such as parasitic worms). In fact, WormLab has also been used to track Drosophila larvae. Contact us to arrange a demonstration using your videos.
"I rarely have encountered a company so committed to support and troubleshooting as MBF."
Andrew Hardaway, Ph.D.
"MBF Bioscience is extremely responsive to the needs of scientists and is genuinely interested in helping all of us in science do the best job we can."
Sigrid C. Veasey, MD
"I am so happy to be a customer of your company. I always get great help related with your product or not. With the experienced members, you are the best team I've ever met. All of your staff are very kind and helpful. Thank you for your great help and support all the time."
Mazhar Özkan
"We’ve been very happy for many years with MBF products and the course of upgrades and improvements. Your service department is outstanding. I have gotten great help from the staff with the software and hardware."
William E. Armstrong, Ph.D.
WormLab provides far superior data than the other conventional programs used for worms. Our work with WormLab has been extremely rewarding because it puts us on the frontier of the behavior studies of C.elegans and allows us to carry out differentiated experiments, with software that is easy to use and needs only simple equipment.
Félix Soares, PhD
We really appreciate the help from all the staff at MBF Bioscience. Expert support combined with their excellent product WormLab are essential for our research on c. elegans behavior in my lab.
Jihong Bai, PhD
Our service sets us apart, with a team that includes Ph.D. neuroscientists, experts in microscopy, stereology, neuron reconstruction, and image processing. We’ve also developed a host of additional support services, including:
We offer both a free demonstration and a free trial copy of WormLab software. During your personal session, you’ll also have the opportunity to talk to us about your hardware, software and experimental design questions with our team of Ph.D. neuroscientists and experts in microscopy, worm tracking and image processing.
The complete stereology solution. The gold standard for unbiased cell counting.