WormLab Citations

WormLab® Citations



69 citations in peer reviewed journals, and counting... 

WormLab® can help you publish your data in high impact journals


Angstman, N., Frank, H.-G., & Schmitz, C. (2016). Advanced behavioral analyses show that the presence of food causes subtle changes in C. elegans movement. [Original Research]. Frontiers in Behavioral Neuroscience, 10. doi: 10.3389/fnbeh.2016.00060. http://www.frontiersin.org/Journal/Abstract.aspx?s=99&name=behavioral_ne...

Angstman, N. B., Kiessling, M. C., Frank, H.-G., & Schmitz, C. (2015). High interindividual variability in dose-dependent reduction in speed of movement after exposing C. elegans to shock waves. Frontiers in Behavioral Neuroscience, 9, 12. doi: 10.3389/fnbeh.2015.00012. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319468/

Ao, Y., Zeng, K., Yu, B., Miao, Y., Hung, W., Yu, Z., . . . Gao, S. (2019). An Upconversion Nanoparticle Enables Near Infrared-Optogenetic Manipulation of the Caenorhabditis elegans Motor Circuit. ACS Nano. doi: 10.1021/acsnano.8b09270. https://doi.org/10.1021/acsnano.8b09270

Bai, J., Farias-Pereira, R., Zhang, Y., Jang, M., Park, Y., & Kim, K.-H. (2020). C. elegans ACAT regulates lipolysis and its related lifespan in fasting through modulation of the genes in lipolysis and insulin/IGF-1 signaling. BioFactors, n/a(n/a). doi: 10.1002/biof.1666. https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/biof.1666

Benbow, S. J., Strovas, T. J., Darvas, M., Saxton, A., & Kraemer, B. C. (2020). Synergistic toxicity between tau and amyloid drives neuronal dysfunction and neurodegeneration in transgenic C. elegans. Human Molecular Genetics. doi: 10.1093/hmg/ddz319. https://doi.org/10.1093/hmg/ddz319

Bhattacharya, R., Touroutine, D., Barbagallo, B., Climer, J., Lambert, C. M., Clark, C. M., . . . Francis, M. M. (2014). A Conserved Dopamine-Cholecystokinin Signaling Pathway Shapes Context–Dependent <italic>Caenorhabditis elegans</italic> Behavior. PLoS Genet, 10(8), e1004584. doi: 10.1371/journal.pgen.1004584. http://dx.doi.org/10.1371%2Fjournal.pgen.1004584

Brugman, K. I., Kato, M., Oh, J. Y., Sternberg, P. W., Maher, S., Wong, W.-R., & Howe, K. (2019). Autism-associated missense genetic variants impact locomotion and neurodevelopment in Caenorhabditis elegans. doi: 10.1093/hmg/ddz051. https://doi.org/10.1093/hmg/ddz051

Chen, N., Li, J., Li, D., Yang, Y., & He, D. (2014). Chronic Exposure to Perfluorooctane Sulfonate Induces Behavior Defects and Neurotoxicity through Oxidative Damages, <italic>In Vivo</italic> and <italic>In Vitro</italic>. PLoS ONE, 9(11), e113453. doi: 10.1371/journal.pone.0113453. http://dx.doi.org/10.1371%2Fjournal.pone.0113453

Choi, M.-K., Liu, H., Wu, T., Yang, W., & Zhang, Y. (2020). NMDAR-mediated modulation of gap junction circuit regulates olfactory learning in C. elegans. Nature Communications, 11(1), 3467. doi: 10.1038/s41467-020-17218-0. https://doi.org/10.1038/s41467-020-17218-0

Chute, C. D., DiLoreto, E. M., Zhang, Y. K., Reilly, D. K., Rayes, D., Coyle, V. L., . . . Srinivasan, J. (2019). Co-option of neurotransmitter signaling for inter-organismal communication in C. elegans. Nature Communications, 10(1), 3186. doi: 10.1038/s41467-019-11240-7. https://doi.org/10.1038/s41467-019-11240-7

Császár, N. B. M., Angstman, N. B., Milz, S., Sprecher, C. M., Kobel, P., Farhat, M., . . . Schmitz, C. (2015). Radial Shock Wave Devices Generate Cavitation. PLoS ONE, 10(10), e0140541. doi: 10.1371/journal.pone.0140541. http://dx.doi.org/10.1371%2Fjournal.pone.0140541

Farias-Pereira, R., Kim, E., & Park, Y. (2019). Cafestol increases fat oxidation and energy expenditure in Caenorhabditis elegans via DAF-12-dependent pathway. Food Chemistry, 125537. doi: https://doi.org/10.1016/j.foodchem.2019.125537. http://www.sciencedirect.com/science/article/pii/S0308814619316565

Farias-Pereira, R., Oshiro, J., Kim, K.-H., & Park, Y. (2018). Green coffee bean extract and 5-O-caffeoylquinic acid regulate fat metabolism in Caenorhabditis elegans. Journal of Functional Foods, 48, 586-593. doi: https://doi.org/10.1016/j.jff.2018.07.049. http://www.sciencedirect.com/science/article/pii/S1756464618303876

Farias-Pereira, R., Park, C.-S., & Park, Y. (2020). Kahweol Reduces Food Intake of Caenorhabditis elegans. Journal of Agricultural and Food Chemistry. doi: 10.1021/acs.jafc.0c03030. https://doi.org/10.1021/acs.jafc.0c03030

Farias-Pereira, R., Savarese, J., Yue, Y., Lee, S.-H., & Park, Y. (2019). Fat-lowering effects of isorhamnetin are via NHR-49-dependent pathway in Caenorhabditis elegans. Current Research in Food Science. doi: https://doi.org/10.1016/j.crfs.2019.11.002. http://www.sciencedirect.com/science/article/pii/S2665927119300103

Faten A Taki, X. P., Baohong Zhang. (2013). Nicotine Exposure Caused Significant Transgenerational Heritable Behavioral Changes In Caenorhabditis Elegans. EXCLI Journal, 12, 793-806. doi. http://www.researchgate.net/publication/256496981_NICOTINE_EXPOSURE_CAUS...

Flores, B. N., Li, X., Malik, A. M., Martinez, J., Beg, A. A., & Barmada, S. J. (2019). An Intramolecular Salt Bridge Linking TDP43 RNA Binding, Protein Stability, and TDP43-Dependent Neurodegeneration. Cell Reports, 27(4), 1133-1150.e1138. doi: https://doi.org/10.1016/j.celrep.2019.03.093. http://www.sciencedirect.com/science/article/pii/S2211124719304322

Fouad, A. D., Teng, S., Mark, J. R., Liu, A., Alvarez-Illera, P., Ji, H., . . . Fang-Yen, C. (2018). Distributed rhythm generators underlie Caenorhabditis elegans forward locomotion. eLife, 7, e29913. doi: 10.7554/eLife.29913. https://doi.org/10.7554/eLife.29913

Fry, A. L., Laboy, J. T., & Norman, K. R. (2014). VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans. [Article]. Nat Commun, 5. doi: 10.1038/ncomms6579. http://dx.doi.org/10.1038/ncomms6579

Gao, S., Guan, S. A., Fouad, A. D., Meng, J., Kawano, T., Huang, Y.-C., . . . Lu, Y. (2018). Excitatory motor neurons are local oscillators for backward locomotion. eLife, 7. doi. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780044/

Gong, J., Yuan, Y., Ward, A., Kang, L., Zhang, B., Wu, Z., . . . Xu, X. Z. S. (2016). The C. elegans Taste Receptor Homolog LITE-1 Is a Photoreceptor. Cell, 167(5), 1252-1263.e1210. doi: http://dx.doi.org/10.1016/j.cell.2016.10.053. http://www.sciencedirect.com/science/article/pii/S0092867416315185

Goya, M. E., Xue, F., Sampedro-Torres-Quevedo, C., Arnaouteli, S., Riquelme-Dominguez, L., Romanowski, A., . . . Doitsidou, M. (2020). Probiotic Bacillus subtilis Protects against α-Synuclein Aggregation in C. elegans. Cell Reports, 30(2), 367-380.e367. doi: https://doi.org/10.1016/j.celrep.2019.12.078. http://www.sciencedirect.com/science/article/pii/S2211124719317437

Han, B., Bellemer, A., & Koelle, M. R. (2015). An Evolutionarily Conserved Switch in Response to GABA Affects Development and Behavior of the Locomotor Circuit of Caenorhabditis elegans. Genetics, 199(4), 1159-1172. doi: 10.1534/genetics.114.173963. http://www.genetics.org/content/199/4/1159.abstract

Hardaway, J. A., Sturgeon, S. M., Snarrenberg, C. L., Li, Z., Xu, X. S., Bermingham, D. P., . . . Carvelli, L. (2015). Glial Expression of the Caenorhabditis elegans Gene swip-10 Supports Glutamate Dependent Control of Extrasynaptic Dopamine Signaling. The Journal of Neuroscience, 35(25), 9409-9423. doi. http://www.jneurosci.org/content/35/25/9409.short

Hill, T. (2017). Ephrin Receptors, AIY Interneuron Physiology, and Behavior. doi. http://digitalcommons.kennesaw.edu/integrbiol_etd/22/

Hsueh, Y.-P., Gronquist, M. R., Schwarz, E. M., Nath, R. D., Lee, C.-H., Gharib, S., . . . Sternberg, P. W. (2017). Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. [JOUR]. eLife, 6, e20023. doi: 10.7554/eLife.20023. https://dx.doi.org/10.7554/eLife.20023

Kosmaczewski, S. G., Han, S. M., Han, B., Irving Meyer, B., Baig, H. S., Athar, W., . . . Hammarlund, M. (2015). RNA ligation in neurons by RtcB inhibits axon regeneration. Proceedings of the National Academy of Sciences, 112(27), 8451-8456. doi: 10.1073/pnas.1502948112. http://www.pnas.org/content/112/27/8451.abstract

Leung, H.-H., Liang, C., Marcotte, D., & McEachern, H. (2015). Effect of salinity on the locomotion of Caenorhabditis elegans. The Expedition, 4. doi. http://ojs.library.ubc.ca/index.php/expedition/article/view/186394

Li, G., Gong, J., Liu, J., Liu, J., Li, H., Hsu, A.-L., . . . Xu, X. Z. S. (2019). Genetic and pharmacological interventions in the aging motor nervous system slow motor aging and extend life span in &lt;em&gt;C. elegans&lt;/em&gt. Science Advances, 5(1), eaau5041. doi: 10.1126/sciadv.aau5041. http://advances.sciencemag.org/content/5/1/eaau5041.abstract

Li, J., Li, D., Yang, Y., Xu, T., Li, P., & He, D. (2015). Acrylamide induces locomotor defects and degeneration of dopamine neurons in Caenorhabditis elegans. Journal of Applied Toxicology, n/a-n/a. doi: 10.1002/jat.3144. http://dx.doi.org/10.1002/jat.3144

Liu, H., Yang, W., Wu, T., Duan, F., Soucy, E., Jin, X., & Zhang, Y. (2018). Cholinergic Sensorimotor Integration Regulates Olfactory Steering. Neuron. doi: https://doi.org/10.1016/j.neuron.2017.12.003. https://www.sciencedirect.com/science/article/pii/S0896627317311261

Lyu, S., Doroodchi, A., Xing, H., Sheng, Y., DeAndrade, M. P., Yang, Y., . . . Li, Y. (2020). BTBD9 and dopaminergic dysfunction in the pathogenesis of restless legs syndrome. Brain Structure and Function. doi: 10.1007/s00429-020-02090-x. https://doi.org/10.1007/s00429-020-02090-x

Mah, M. W., Mitha, I., Trinh, A., & Wu, D. (2017). Effect of NaCl concentration on the mid-body movement of Caenorhabditis elegans. The Expedition, 6. doi. http://ojs.library.ubc.ca/index.php/expedition/article/view/189083

Malvar, S., Gontijo, R., Carmo, B., & Cunha, F. (2017). On the kinematics-wave motion of living particles in suspension. Biomicrofluidics, 11(4), 044112. doi. http://aip.scitation.org/doi/abs/10.1063/1.4997715

Martin, J., Oka, Y., Pabla, P., & Qubain, O. (2017). The effect of temperature on the locomotion of Caenorhabditis elegans. The Expedition, 6. doi. http://ojs.library.ubc.ca/index.php/expedition/article/view/189099

Martinez, B. A., Kim, H., Ray, A., Caldwell, G. A., & Caldwell, K. A. (2015). A bacterial metabolite induces glutathione-tractable proteostatic damage, proteasomal disturbances, and PINK1-dependent autophagy in C. elegans. [Original Article]. Cell Death Dis, 6, e1908. doi: 10.1038/cddis.2015.270. http://dx.doi.org/10.1038/cddis.2015.270

Meneely, P. M., Dahlberg, C. L., & Rose, J. K. (2019). Working with Worms: Caenorhabditis elegans as a Model Organism. Current Protocols Essential Laboratory Techniques, 19(1), e35. doi: 10.1002/cpet.35. https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpet.35

Morales-Zavala, F., Arriagada, H., Hassan, N., Velasco, C., Riveros, A., Álvarez, A. R., . . . Kogan, M. J. (2017). Peptide multifunctionalized gold nanorods decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer's disease. Nanomedicine: Nanotechnology, Biology and Medicine. doi: https://doi.org/10.1016/j.nano.2017.06.013. http://www.sciencedirect.com/science/article/pii/S1549963417301211

Nagarajan, A., Ning, Y., Reisner, K., Buraei, Z., Larsen, J. P., Hobert, O., & Doitsidou, M. (2014). Progressive Degeneration of Dopaminergic Neurons through TRP Channel-Induced Cell Death. The Journal of Neuroscience, 34(17), 5738-5746. doi. http://www.jneurosci.org/content/34/17/5738.short

O’Donnell, M. P., Chao, P.-H., Kammenga, J. E., & Sengupta, P. (2018). Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLoS genetics, 14(2), e1007213. doi. https://www.ncbi.nlm.nih.gov/pubmed/29415022

Polli, J. R., Dobbins, D. L., Kobet, R. A., Farwell, M. A., Zhang, B., Lee, M.-H., & Pan, X. (2014). Drug-dependent behaviors and nicotinic acetylcholine receptor expressions in Caenorhabditis elegans following chronic nicotine exposure. NeuroToxicology, (0). doi: http://dx.doi.org/10.1016/j.neuro.2014.12.005. http://www.sciencedirect.com/science/article/pii/S0161813X14002204

Rendon-Nava, D., Mendoza-Espinosa, D., Negron-Silva, G. E., Valdez-Calderon, A., Martinez-Torres, A., Tellez-Arreola, J. L., & Gonzalez-Montiel, S. (2017). Chrysin functionalized NHC-Au(I) complexes: Synthesis, characterization and effects on the nematode Caenorhabditis elegans. [10.1039/C6NJ03299K]. New Journal of Chemistry. doi: 10.1039/c6nj03299k. http://dx.doi.org/10.1039/C6NJ03299K

Rochester, J. D., Tanner, P. C., Sharp, C. S., Andralojc, K. M., & Updike, D. L. (2017). PQN-75 is expressed in the pharyngeal gland cells of &lt;em&gt;C&lt;/em&gt;&lt;em&gt;aenorhabditis&lt;/em&gt; &lt;em&gt;elegans&lt;/em&gt; and is dispensable for germline development. [10.1242/bio.027987]. Biology Open, 6(9), 1355. doi. http://bio.biologists.org/content/6/9/1355.abstract

Roussel, N., Sprenger, J., Tappan, S. J., & Glaser, J. R. (2014). Robust tracking and quantification of C. elegans body shape and locomotion through coiling, entanglement, and omega bends. Worm, 3(4), e982437. doi: 10.4161/21624054.2014.982437. http://dx.doi.org/10.4161/21624054.2014.982437

Shen, P., Hsieh, T.-H., Yue, Y., Sun, Q., Clark, J. M., & Park, Y. (2017). Deltamethrin increases the fat accumulation in 3T3-L1 adipocytes and Caenorhabditis elegans. Food and Chemical Toxicology, 101, 149-156. doi: http://dx.doi.org/10.1016/j.fct.2017.01.015. //www.sciencedirect.com/science/article/pii/S0278691517300236

Shen, P., Kershaw, J. C., Yue, Y., Wang, O., Kim, K.-H., McClements, D. J., & Park, Y. (2018). Effects of conjugated linoleic acid (CLA) on fat accumulation, activity, and proteomics analysis in Caenorhabditis elegans. Food Chemistry, 249, 193-201. doi: https://doi.org/10.1016/j.foodchem.2018.01.017. http://www.sciencedirect.com/science/article/pii/S0308814618300177

Shen, P., Yue, Y., Kim, K.-H., & Park, Y. (2017). Piceatannol Reduces Fat Accumulation in Caenorhabditis elegans. Journal of Medicinal Food. doi: 10.1089/jmf.2016.0179. https://doi.org/10.1089/jmf.2016.0179

Shen, P., Yue, Y., Sun, Q., Kasireddy, N., Kim, K.-H., & Park, Y. (2017). Piceatannol extends the lifespan of Caenorhabditis elegans via DAF-16. BioFactors, n/a-n/a. doi: 10.1002/biof.1346. http://dx.doi.org/10.1002/biof.1346

Shepherd, E., Greiner, S. P., & Bowdridge, S. (2020). Characterization of ovine monocyte activity when cultured with Haemonchus contortus larvae in vitro. Parasite Immunology, n/a(n/a), e12773. doi: 10.1111/pim.12773. https://onlinelibrary.wiley.com/doi/abs/10.1111/pim.12773

Shuai, X., Bailey-Brock, J. H., & Lin, D. T. (2014). Spatio-temporal changes in trophic categories of infaunal polychaetes near the four wastewater ocean outfalls on Oahu, Hawaii. Water Research, (0). doi: http://dx.doi.org/10.1016/j.watres.2014.03.058. http://www.sciencedirect.com/science/article/pii/S0043135414002541

Sun, Q., Yue, Y., Shen, P., Yang, J. J., & Park, Y. (2016). Cranberry Product Decreases Fat Accumulation in Caenorhabditis elegans. Journal of Medicinal Food. doi: 10.1089/jmf.2015.0133. http://dx.doi.org/10.1089/jmf.2015.0133

Sutphin, G. L., Backer, G., Sheehan, S., Bean, S., Corban, C., Liu, T., . . . Aging Research in Genomic Epidemiology Consortium Gene Expression Working, G. (2017). Caenorhabditis elegans orthologs of human genes differentially expressed with age are enriched for determinants of longevity. Aging Cell, n/a-n/a. doi: 10.1111/acel.12595. http://dx.doi.org/10.1111/acel.12595

Téllez-Arreola, J., Valdez-Calderón, A., González-Montiel, S., Martinez-Torres, A., & Hernandez, A. (2019). Some effects of a chrysin bromide-derivative on GABA-A receptors and on Caenorhabditis elegans. Europe PMC. doi. https://europepmc.org/fulltext/ctx/m1023

Vozdek, R., Long, Y., & Ma, D. K. (2018). The receptor tyrosine kinase HIR-1 coordinates HIF-independent responses to hypoxia and extracellular matrix injury. [10.1126/scisignal.aat0138]. Science Signaling, 11(550). doi. http://stke.sciencemag.org/content/11/550/eaat0138.abstract

Weeks, J. C., Roberts, W. M., Leasure, C., Suzuki, B. M., Robinson, K. J., Currey, H., . . . Liachko, N. F. (2018). Sertraline, Paroxetine, and Chlorpromazine Are Rapidly Acting Anthelmintic Drugs Capable of Clinical Repurposing. Scientific Reports, 8(1), 975. doi: 10.1038/s41598-017-18457-w. https://doi.org/10.1038/s41598-017-18457-w

Woldemariam, S., Nagpal, J., Hill, T., Li, J., Schneider, M. W., Shankar, R., . . . Etoile, N. (2019). Using a Robust and Sensitive GFP-Based cGMP Sensor for Real Time Imaging in Intact &lt;em&gt;Caenorhabditis elegans&lt;/em&gt. Genetics, genetics.302392.302019. doi: 10.1534/genetics.119.302392. http://www.genetics.org/content/early/2019/07/22/genetics.119.302392.abs...

Wu, X., Al-Amin, M., Zhao, C., An, F., Wang, Y., Huang, Q., . . . Song, H. (2020). Catechinic acid, a natural polyphenol compound, extends the lifespan of Caenorhabditis elegans via mitophagy pathways. [10.1039/D0FO00694G]. Food & Function. doi: 10.1039/d0fo00694g. http://dx.doi.org/10.1039/D0FO00694G

Wu, X., Mohammad, A., Zhao, C., An, F., Wang, Y., Huang, Q., . . . Song, H. (2020). Catechinic acid, a natural polyphenols compound, extends the lifespan of Caenorhabditis elegans via mitophagy pathways. [10.1039/D0FO00694G]. Food & Function. doi: 10.1039/d0fo00694g. http://dx.doi.org/10.1039/D0FO00694G

Xiao, R., Chun, L., Ronan, Elizabeth A., Friedman, David I., Liu, J., & Xu, X. Z. S. (2015). RNAi Interrogation of Dietary Modulation of Development, Metabolism, Behavior, and Aging in C. elegans. Cell Reports, (0). doi: http://dx.doi.org/10.1016/j.celrep.2015.04.024. http://www.sciencedirect.com/science/article/pii/S2211124715004118

Xu, T., Li, P., Wu, S., Lei, L., & He, D. (2017). Tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloropropyl) phosphate (TCPP) induce locomotor deficits and dopaminergic degeneration in Caenorhabditis elegans. [10.1039/C6TX00306K]. Toxicology Research. doi: 10.1039/c6tx00306k. http://dx.doi.org/10.1039/C6TX00306K

Xu, T., Zhang, M., Hu, J., Li, Z., Wu, T., Bao, J., . . . He, D. (2017). Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements. Chemosphere, 181, 55-62. doi: https://doi.org/10.1016/j.chemosphere.2017.04.068. http://www.sciencedirect.com/science/article/pii/S0045653517306045

Yue, Y., Li, S., Qian, Z., Pereira, R. F., Lee, J., Doherty, J. J., . . . Park, Y. (2020). Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans. Food and Chemical Toxicology, 111695. doi: https://doi.org/10.1016/j.fct.2020.111695. http://www.sciencedirect.com/science/article/pii/S0278691520305858

Yue, Y., Shen, P., Chang, A. L., Qi, W., Kim, K.-H., Kim, D., & Park, Y. (2019). trans-Trismethoxy resveratrol decreased fat accumulation dependent on fat-6 and fat-7 in Caenorhabditis elegans. Food & Function. doi. https://pubs.rsc.org/en/content/articlelanding/2019/fo/c9fo00778d#!divAb...

Yue, Y., Shen, P., Xu, Y., & Park, Y. (2018). p-Coumaric acid improves oxidative and osmosis stress responses in Caenorhabditis elegans. Journal of the Science of Food and Agriculture, 0(ja). doi: doi:10.1002/jsfa.9288. https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.9288