WormLab®Citations

More citations from academic journals
MBF Bioscience > WormLab®Citations

150 citations in peer-reviewed journals, and counting… 

Most Recent

Nature

On the benefits of the tryptophan metabolite 3-hydroxyanthranilic acid in Caenorhabditis elegans and mouse aging

14 December 2023
Dang, H., Castro-Portuguez, R., Espejo, L. et al..
Genetics

Expression and function of C. elegans UNCP-18, a paralogue of the SM protein UNC-18

05 October 2023
Boeglin, M., E. Leyva-Díaz, et al.
Biomedicine & Pharmacotherapy

Caenorhabditis elegans as an in vivo model for the identification of natural antioxidants with anti-aging actions

28 September 2023
Lin, Y., C. Lin, et al.
GeroScience

Comparative analysis of the molecular and physiological consequences of constitutive SKN-1 activation

26 September 2023
Ramos, C. M. and S. P. Curran

View All Citations

Possik, E., L.-L. Klein, et al. (2023). "Glycerol 3-phosphate phosphatase/PGPH-2 counters metabolic stress and promotes healthy aging via a glycogen sensing-AMPK-HLH-30-autophagy axis in C. elegans." Nature Communications 14(1): 5214. https://doi.org/10.1038/s41467-023-40857-y

Boeglin, M., E. Leyva-Díaz, et al. (2023). "Expression and function of C. elegans UNCP-18, a paralogue of the SM protein UNC-18." Genetics. https://doi.org/10.1093/genetics/iyad180

Lin, Y., C. Lin, et al. (2023). "Caenorhabditis elegans as an in vivo model for the identification of natural antioxidants with anti-aging actions." Biomedicine & Pharmacotherapy 167: 115594. https://doi.org/10.1016/j.biopha.2023.115594

Ramos, C. M. and S. P. Curran (2023). "Comparative analysis of the molecular and physiological consequences of constitutive SKN-1 activation." GeroScience. https://doi.org/10.1007/s11357-023-00937-9

Stuhr, N. L. and S. P. Curran (2023). Different methods of killing bacteria diets differentially influence Caenorhabditis elegans physiology, microPublication Biology. https://www.micropublication.org/journals/biology/micropub-biology-000902

Pang, Y., M. Li, et al. (2023). "Preliminary study on the E-liquid and aerosol on the neurobehavior of C. elegans." Environment International: 108180. https://doi.org/10.1016/j.envint.2023.108180

Wang, W., T. Sherry, et al. (2023). "An intestinal sphingolipid confers intergenerational neuroprotection." Nature Cell Biology 25(8): 1196-1207. https://doi.org/10.1038/s41556-023-01195-9

Dai, C.-Y., C. C. Ng, et al. (2023). "ATFS-1 counteracts mitochondrial DNA damage by promoting repair over transcription." Nature Cell Biology. https://doi.org/10.1038/s41556-023-01192-y

Chen, Y., L. Xu, et al. (2023). "Four novel sleep-promoting peptides were screened and identified from bovine casein hydrolysates using patch-clamp model in vitro and Caenorhabditis elegans in vivo." Food & Function. https://doi.org/10.1039/D3FO01246H

Cordeiro, L. M., M. V. Soares, et al. (2023). "Toxicity of Copper and Zinc alone and in combination in Caenorhabditis elegans model of Huntington's disease and protective effects of rutin." NeuroToxicology. https://doi.org/10.1016/j.neuro.2023.06.005

Hopkins, C. E., K. McCormick, et al. (2023). "Clinical Variants in C. elegans Expressing Human STXBP1 Reveals a Novel Class of Pathogenic Variants and Classifies Variants of Uncertain Significance." Genetics in Medicine Open: 100823. https://doi.org/10.1016/j.gimo.2023.100823

Chandra, R., F. Farah, et al. "Sleep is required to consolidate odor memory and remodel olfactory synapses." Cell. https://doi.org/10.1016/j.cell.2023.05.006

Jiang, Y., M. Huang, et al. (2023). "Full-Length Transcriptome Analysis of Soybean Cyst Nematode (Heterodera glycines) Reveals an Association of Behaviors in Response to Attractive pH and Salt Solutions with Activation of Transmembrane Receptors, Ion Channels, and Ca2+ Transporters." Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.3c00908

Jesudoss Chelladurai, J. R. J., K. A. Martin, et al. (2023). "Repertoire of P-glycoprotein drug transporters in the zoonotic nematode Toxocara canis." Scientific Reports 13(1): 4971. https://doi.org/10.1038/s41598-023-31556-1

Zhang, L., L. Li, et al. "The C2 and PH domains of CAPS constitute an effective PI(4,5)P2-binding unit essential for Ca2+-regulated exocytosis." Structure. https://doi.org/10.1016/j.str.2023.02.004

Moreira, P., P. Papatheodorou, et al. (2023). "Nuclear Factor-Y is a Pervasive Regulator of Neuronal Gene Expression." bioRxiv: 2023.2002.2014.528575. https://doi.org/10.1101/2023.02.14.528575

Pandey, T., B. Wang, et al. (2023). "Insulin-mTOR hyperfunction drives C. elegans aging opposed by the megaprotein LPD-3." bioRxiv: 2023.2002.2014.528431. https://doi.org/10.1101/2023.02.14.528431

Yuan, Y., K. Xin, et al. (2023). "A GNN-based model for capturing spatio-temporal changes in locomotion behaviors of aging C. elegans." Computers in Biology and Medicine 155: 106694. https://doi.org/10.1016/j.compbiomed.2023.106694

Romero-Márquez, J. M., M. D. Navarro-Hortal, et al. (2023). "In Vivo Anti-Alzheimer and Antioxidant Properties of Avocado (Persea americana Mill.) Honey from Southern Spain." Antioxidants 12(2): 404. https://doi.org/10.3390/antiox12020404

Urso, S. J., A. Sathaseevan, et al. (2023). "Regulation of the hypertonic stress response by the 3’ mRNA cleavage and polyadenylation complex." bioRxiv: 2023.2001.2023.525244. https://doi.org/10.1101/2023.01.23.525244

Kropp, P. A., P. Rogers, et al. (2023). "Patient-specific variants of NFU1/NFU-1 cause aberrant cholinergic signaling in a Caenorhabditis elegans model of MMDS1." Dis Model Mech 16(049594): 049594. DOI: 10.1242/dmm.049594

Lanier, V. J., A. M. White, et al. (2023). "Theory and practice of using cell strainers to sort <em>Caenorhabditis elegans</em> by size." bioRxiv: 2023.2001.2007.523116. https://doi.org/10.1101/2023.01.07.523116

Zhao, K., Y. Zhang, et al. (2023). "The joint effects of nanoplastics and TBBPA on neurodevelopmental toxicity in Caenorhabditis elegans." Toxicology Research: tfac086. https://doi.org/10.1093/toxres/tfac086

Aquino Nunez, W., B. Combs, et al. (2022). "Age-dependent accumulation of tau aggregation in Caenorhabditis elegans." Frontiers in Aging 3. https://doi.org/10.3389/fragi.2022.928574

Latimer, C. S., J. G. Stair, et al. (2022). "TDP-43 promotes tau accumulation and selective neurotoxicity in bigenic Caenorhabditis elegans." Disease Models & Mechanisms 15(4). https://doi.org/10.1242/dmm.049323

Gildea, H. K., P. A. Frankino, et al. (2022). "Glia of <i>C. elegans</i> coordinate a protective organismal heat shock response independent of the neuronal thermosensory circuit." Science Advances 8(49): eabq3970. DOI: 10.1126/sciadv.abq3970

Liao, C.-P., Y.-C. Chiang, et al. (2022). "Neurophysiological basis of stress-induced aversive memory in the nematode Caenorhabditis elegans." Current Biology. https://doi.org/10.1016/j.cub.2022.11.012

Liudkovska, V., P. S. Krawczyk, et al. (2022). “TENT5 cytoplasmic noncanonical poly(A) polymerases regulate the innate immune response in animals.” Science Advances 8(46): eadd9468. DOI: 10.1126/sciadv.add9468

Wang, C., B. Wang, et al. (2022). "A conserved megaprotein-based molecular bridge critical for lipid trafficking and cold resilience." Nature Communications 13(1): 6805. https://doi.org/10.1038/s41467-022-34450-y

Li, L., H. Liu, et al. (2022). "CASK and FARP localize two classes of post-synaptic ACh receptors thereby promoting cholinergic transmission." PLOS Genetics 18(10): e1010211. https://doi.org/10.1371/journal.pgen.1010211

Navarro-Hortal, M. D., J. M. Romero-Márquez, et al. (2022). "Amyloid β-but not Tau-induced neurotoxicity is suppressed by Manuka honey via HSP-16.2 and SKN-1/Nrf2 pathways in an in vivo model of Alzheimer's disease." Food & Function. DOI https://doi.org/10.1039/D2FO01739C

AlOkda, A. and J. M. Van Raamsdonk (2022). Effect of DMSO on lifespan and physiology in C. elegans: Implications for use of DMSO as a solvent for compound delivery, microPublication Biology. 10.17912/micropub.biology.000634.

Mattison, K. A., G. Tossing, et al. (2022). "ATP6V0C variants impair vacuolar V-ATPase causing a neurodevelopmental disorder often associated with epilepsy." Brain: awac330. https://doi.org/10.1093/brain/awac330

da Silva, A. F., L. M. Cordeiro, et al. (2022). "JM-20 affects GABA neurotransmission in Caenorhabditis elegans." NeuroToxicology. https://doi.org/10.1016/j.neuro.2022.08.012

da Silva, T. C., T. L. da Silveira, et al. (2022). "Exogenous Adenosine Modulates Behaviors and Stress Response in Caenorhabditis elegans." Neurochemical Research. https://doi.org/10.1007/s11064-022-03727-5

Chen, Y., Q. Qin, et al. (2022). "Carnosol Reduced Pathogenic Protein Aggregation and Cognitive Impairment in Neurodegenerative Diseases Models via Improving Proteostasis and Ameliorating Mitochondrial Disorders." Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.2c02665

Wang, C., L. Zeng, et al. (2022). "Decabromodiphenyl ethane induces locomotion neurotoxicity and potential Alzheimer’s disease risks through intensifying amyloid-beta deposition by inhibiting transthyretin/transthyretin-like proteins." Environment International 168: 107482. https://doi.org/10.1016/j.envint.2022.107482

Raj, V. and A. Thekkuveettil (2022). "Dopamine plays a critical role in the olfactory adaptive learning pathway in Caenorhabditis elegans." Journal of Neuroscience Research n/a(n/a). https://doi.org/10.1002/jnr.25112

Ahmad, W. (2022). "Glucose enrichment impair neurotransmission and induce Aβ oligomerization that can not be reversed by manipulating O-β-GlcNAcylation in the C. elegans model of Alzheimer's disease." The Journal of Nutritional Biochemistry: 109100. https://read.qxmd.com/journal/30483/12

Tan, C.-H., H. Park, et al. (2022). "Loss of famh-136/ FAM136A results in minor locomotion and behavioral changes in Caenorhabditis elegans." microPublication biology 2022: 10.17912/micropub.biology.000553. https://doi.org/10.17912/micropub.biology.000553

J. Alex Parker, Sarah Duhaime, Constantin Bretonneau et al. Transgenic TDP-43 and endogenous TDP-1 Caenorhabditis elegans ALS models show motor deficits and age-dependent neurodegeneration, 20 April 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1555653/v1]

 

Toker, I. A. and O. Hobert (2022). "The Cbr-DPY-10(Arg92Cys) modification is a reliable co-conversion marker for CRISPR/Cas9 genome editing in Caenorhabditis briggsae." microPublication Biology: 10.17912/micropub.biology.000554. doi: 10.17912/micropub.biology.000554

 

Datta, R., A. Robertson, et al. (2022). "High concentrations of the anthelmintic diethylcarbamazine paralyze C. elegans independently of TRP-2." microPublication Biology: 10.17912/micropub.biology.000548. doi: 10.17912/micropub.biology.000548

 

Zaroubi, L., I. Ozugergin, et al. "The Ubiquitous Soil Terpene Geosmin Acts as a Warning Chemical." Applied and Environmental Microbiology 0(0): e00093-00022.  https://doi.org/10.1128/aem.00093-22

 

Chiang, Y.-C., C.-P. Liao, et al. (2022). "A serotonergic circuit regulates aversive associative learning under mitochondrial stress in C. elegans." Proceedings of the National Academy of Sciences 119(11): e2115533119. https://doi.org/10.1073/pnas.2115533119

 

Gaeta, A. L., J. B. Nourse, et al. (2022). "Systemic RNA interference-defective (SID) genes modulate dopaminergic neurodegeneration in <em>C. elegans</em&gt." bioRxiv: 2022.2002.2023.481573. 10.1101/2022.02.23.481573

 

Hagar, S., S. Yehuda, et al. (2022). Nature Portfolio. 10.21203/rs.3.rs-1345880/v1 

 

Yan, Z., X. Cheng, et al. (2022). "Sexually Dimorphic Neurotransmitter Release at the Neuromuscular Junction in Adult Caenorhabditis elegans." Frontiers in Molecular Neuroscience 14. https://doi.org/10.3389/fnmol.2021.780396

 

Chou, S.-H., Y.-J. Chen, et al. (2022). "A role for dopamine in C. elegans avoidance behavior induced by mitochondrial stress." Neuroscience Research. https://doi.org/10.1016/j.neures.2022.01.005

 

Possik, E., C. Schmitt, et al. (2022). "Phosphoglycolate phosphatase homologs act as glycerol-3-phosphate phosphatase to control stress and healthspan in C. elegans." Nature Communications 13(1): 177. https://doi.org/10.1038/s41467-021-27803-6

 

Wang, C., Y. Li, et al. (2022). "Tris(1,3-dichloro-2-propyl) phosphate reduces longevity through a specific microRNA-mediated DAF-16/FoxO in an unconventional insulin/insulin-like growth factor‑1 signaling pathway." Journal of Hazardous Materials 425: 128043. https://doi.org/10.1016/j.jhazmat.2021.128043

 

Raffaele, M., K. Kovacovicova, et al. (2021). "Nociceptin/orphanin FQ opioid receptor (NOP) selective ligand MCOPPB links anxiolytic and senolytic effects." GeroScience. https://doi.org/10.1007/s11357-021-00487-y

 

Palumbos, S. D., R. Skelton, et al. (2021). "cAMP controls a trafficking mechanism that maintains the neuron specificity and subcellular placement of electrical synapses." Developmental Cell. https://doi.org/10.1016/j.devcel.2021.10.011

 

Chai, C. M., W. Chen, et al. (2021). "A conserved behavioral role for a nematode interneuron neuropeptide receptor." Genetics(iyab198). https://doi.org/10.1093/genetics/iyab198

 

Gaur, A. V. and R. Agarwal (2021). "Risperidone Induced Alterations in Feeding and Locomotion Behavior of Caenorhabditis elegans." Current Research in Toxicology. https://doi.org/10.1016/j.crtox.2021.10.003

 

Cuentas-Condori, A., B. Mulcahy, et al. "C. elegans neurons have functional dendritic spines." eLife 8: e47918 https://doi.org/10.7554/eLife.47918

 

C1 - eLife 2019;8:e47918. 10.7554/eLife.47918

 

Doser, R. L., G. C. Amberg, et al. "Reactive Oxygen Species Modulate Activity-Dependent AMPA Receptor Transport in C. elegans." The Journal of Neuroscience 40(39): 7405. https://doi.org/10.1523/JNEUROSCI.0902-20.2020

 

Seo, Y., S. Kingsley, et al. "Metabolic shift from glycogen to trehalose promotes lifespan and healthspan in Caenorhabditis elegans.." Proceedings of the National Academy of Sciences 115(12): E2791. https://doi.org/10.1073/pnas.1714178115

 

Tahernia, M., M. Mohammadifar, et al. "Paper-Supported High-Throughput 3D Culturing, Trapping, and Monitoring of Caenorhabditis Elegans." Micromachines 11(1). https://doi.org/10.3390/mi11010099

 

Williams, A. B., F. Heider, et al. "Restoration of Proteostasis in the Endoplasmic Reticulum Reverses an Inflammation-Like Response to Cytoplasmic DNA in Caenorhabditis elegans." Genetics 212(4): 1259. https://doi.org/10.1534/genetics.119.302422

 

Martinez, B. A., D. A. Petersen, et al. "Dysregulation of the Mitochondrial Unfolded Protein Response Induces Non-Apoptotic Dopaminergic Neurodegeneration in C. elegans; Models of Parkinson's Disease." The Journal of Neuroscience 37(46): 11085. https://doi.org/10.1523/JNEUROSCI.1294-17.2017

 

Pereira, A. G., X. Gracida, et al. "C. elegans aversive olfactory learning generates diverse intergenerational effects." Journal of Neurogenetics 34(3-4): 378-388. https://doi.org/10.1080/01677063.2020.1819265

 

Rollins, J. A., A. C. Howard, et al. "Assessing Health Span in Caenorhabditis elegans: Lessons From Short-Lived Mutants." The Journals of Gerontology: Series A 72(4): 473-480. https://doi.org/10.1093/gerona/glw248

 

Soh, M. S., X. Cheng, et al. "Disruption of genes associated with Charcot-Marie-Tooth type 2 lead to common behavioural, cellular and molecular defects in Caenorhabditis elegans." PLOS ONE 15(4): e0231600. https://doi.org/10.1371/journal.pone.0231600

 

Angstman, N., Frank, H.-G., & Schmitz, C. (2016). Advanced behavioral analyses show that the presence of food causes subtle changes in C. elegans movement. [Original Research]. Frontiers in Behavioral Neuroscience, 10. doi: 10.3389/fnbeh.2016.00060. http://www.frontiersin.org/Journal/Abstract.aspx?s=99&name=behavioral_ne...

 

Angstman, N. B., Kiessling, M. C., Frank, H.-G., & Schmitz, C. (2015). High interindividual variability in dose-dependent reduction in speed of movement after exposing C. elegans to shock waves. Frontiers in Behavioral Neuroscience, 9, 12. doi: 10.3389/fnbeh.2015.00012. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319468/

 

Ao, Y., Zeng, K., Yu, B., Miao, Y., Hung, W., Yu, Z., . . . Gao, S. (2019). An Upconversion Nanoparticle Enables Near Infrared-Optogenetic Manipulation of the Caenorhabditis elegans Motor Circuit. ACS Nano. doi: 10.1021/acsnano.8b09270. https://doi.org/10.1021/acsnano.8b09270

 

Bai, J., Farias-Pereira, R., Jang, M., Zhang, Y., Lee, S. M., Kim, Y.-S., . . . Kim, K.-H. (2021). Azelaic Acid Promotes Caenorhabditis elegans Longevity at Low Temperature Via an Increase in Fatty Acid Desaturation. Pharmaceutical Research. doi: 10.1007/s11095-020-02975-w. https://doi.org/10.1007/s11095-020-02975-w

 

Bai, J., Farias-Pereira, R., Zhang, Y., Jang, M., Park, Y., & Kim, K.-H. (2020). C. elegans ACAT regulates lipolysis and its related lifespan in fasting through modulation of the genes in lipolysis and insulin/IGF-1 signaling. BioFactors, n/a(n/a). doi: 10.1002/biof.1666. https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/biof.1666

 

Barbagallo, B., Philbrook, A., Touroutine, D., Banerjee, N., Oliver, D., Lambert, C. M., & Francis, M. M. (2017). Excitatory neurons sculpt GABAergic neuronal connectivity in the C. elegans motor circuit. Development, 144(10), 1807. doi: 10.1242/dev.141911. http://dev.biologists.org/content/144/10/1807.abstract

 

Barbagallo, B., Philbrook, A., Touroutine, D., Banerjee, N., Oliver, D., Lambert, C. M., & Francis, M. M. (2017). Excitatory neurons sculpt GABAergic neuronal connectivity in the C. elegans motor circuit. Development, 144(10), 1807-1819. doi: 10.1242/dev.141911. https://dev.biologists.org/content/develop/144/10/1807.full.pdf

 

Benbow, S. J., Strovas, T. J., Darvas, M., Saxton, A., & Kraemer, B. C. (2020). Synergistic toxicity between tau and amyloid drives neuronal dysfunction and neurodegeneration in transgenic C. elegans. Human Molecular Genetics. doi: 10.1093/hmg/ddz319. https://doi.org/10.1093/hmg/ddz319

 

Bhattacharya, R., Touroutine, D., Barbagallo, B., Climer, J., Lambert, C. M., Clark, C. M., . . . Francis, M. M. (2014). A Conserved Dopamine-Cholecystokinin Signaling Pathway Shapes Context–Dependent Caenorhabditis elegans Behavior. PLoS Genet, 10(8), e1004584. doi: 10.1371/journal.pgen.1004584. http://dx.doi.org/10.1371%2Fjournal.pgen.1004584

 

Brosnan, C. A., Palmer, A. J., & Zuryn, S. (2021). Cell-type-specific profiling of loaded miRNAs from Caenorhabditis elegans reveals spatial and temporal flexibility in Argonaute loading. Nature Communications, 12(1), 2194. doi: 10.1038/s41467-021-22503-7. https://doi.org/10.1038/s41467-021-22503-7

 

Brugman, K. I., Kato, M., Oh, J. Y., Sternberg, P. W., Maher, S., Wong, W.-R., & Howe, K. (2019). Autism-associated missense genetic variants impact locomotion and neurodevelopment in Caenorhabditis elegans. doi: 10.1093/hmg/ddz051. https://doi.org/10.1093/hmg/ddz051

 

Chen, N., Li, J., Li, D., Yang, Y., & He, D. (2014). Chronic Exposure to Perfluorooctane Sulfonate Induces Behavior Defects and Neurotoxicity through Oxidative Damages, In Vivo and In Vitro PLoS ONE, 9(11), e113453. doi: 10.1371/journal.pone.0113453. http://dx.doi.org/10.1371%2Fjournal.pone.0113453

 

Choi, M.-K., Liu, H., Wu, T., Yang, W., & Zhang, Y. (2020). NMDAR-mediated modulation of gap junction circuit regulates olfactory learning in C. elegans. Nature Communications, 11(1), 3467. doi: 10.1038/s41467-020-17218-0. https://doi.org/10.1038/s41467-020-17218-0

 

Chute, C. D., DiLoreto, E. M., Zhang, Y. K., Reilly, D. K., Rayes, D., Coyle, V. L., . . . Srinivasan, J. (2019). Co-option of neurotransmitter signaling for inter-organismal communication in C. elegans. Nature Communications, 10(1), 3186. doi: 10.1038/s41467-019-11240-7. https://doi.org/10.1038/s41467-019-11240-7

 

Császár, N. B. M., Angstman, N. B., Milz, S., Sprecher, C. M., Kobel, P., Farhat, M., . . . Schmitz, C. (2015). Radial Shock Wave Devices Generate Cavitation. PLoS ONE, 10(10), e0140541. doi: 10.1371/journal.pone.0140541. http://dx.doi.org/10.1371%2Fjournal.pone.0140541

 

Farias-Pereira, R., Kim, E., & Park, Y. (2019). Cafestol increases fat oxidation and energy expenditure in Caenorhabditis elegans via DAF-12-dependent pathway. Food Chemistry, 125537. doi: https://doi.org/10.1016/j.foodchem.2019.125537.

 

Farias-Pereira, R., Oshiro, J., Kim, K.-H., & Park, Y. (2018). Green coffee bean extract and 5-O-caffeoylquinic acid regulate fat metabolism in Caenorhabditis elegans. Journal of Functional Foods, 48, 586-593. doi: https://doi.org/10.1016/j.jff.2018.07.049.

 

Farias-Pereira, R., Park, C.-S., & Park, Y. (2020). Kahweol Reduces Food Intake of Caenorhabditis elegans. Journal of Agricultural and Food Chemistry. doi: 10.1021/acs.jafc.0c03030. https://doi.org/10.1021/acs.jafc.0c03030

 

Farias-Pereira, R., Savarese, J., Yue, Y., Lee, S.-H., & Park, Y. (2019). Fat-lowering effects of isorhamnetin are via NHR-49-dependent pathway in Caenorhabditis elegans. Current Research in Food Science. doi: https://doi.org/10.1016/j.crfs.2019.11.002.

 

Faten A Taki, X. P., Baohong Zhang. (2013). Nicotine Exposure Caused Significant Transgenerational Heritable Behavioral Changes In Caenorhabditis Elegans. EXCLI Journal, 12, 793-806. doi. http://www.researchgate.net/publication/256496981_NICOTINE_EXPOSURE_CAUS...

 

Flores, B. N., Li, X., Malik, A. M., Martinez, J., Beg, A. A., & Barmada, S. J. (2019). An Intramolecular Salt Bridge Linking TDP43 RNA Binding, Protein Stability, and TDP43-Dependent Neurodegeneration. Cell Reports, 27(4), 1133-1150.e1138. doi: https://doi.org/10.1016/j.celrep.2019.03.093.

 

Fouad, A. D., Teng, S., Mark, J. R., Liu, A., Alvarez-Illera, P., Ji, H., . . . Fang-Yen, C. (2018). Distributed rhythm generators underlie Caenorhabditis elegans forward locomotion. eLife, 7, e29913. doi: 10.7554/eLife.29913. https://doi.org/10.7554/eLife.29913

 

Fry, A. L., Laboy, J. T., & Norman, K. R. (2014). VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans. [Article]. Nat Commun, 5. doi: 10.1038/ncomms6579. http://dx.doi.org/10.1038/ncomms6579

 

Gao, S., Guan, S. A., Fouad, A. D., Meng, J., Kawano, T., Huang, Y.-C., . . . Lu, Y. (2018). Excitatory motor neurons are local oscillators for backward locomotion. eLife, 7. doi. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780044/

 

Gong, J., Yuan, Y., Ward, A., Kang, L., Zhang, B., Wu, Z., . . . Xu, X. Z. S. (2016). The C. elegans Taste Receptor Homolog LITE-1 Is a Photoreceptor. Cell, 167(5), 1252-1263.e1210. doi: http://dx.doi.org/10.1016/j.cell.2016.10.053.

 

Goya, M. E., Xue, F., Sampedro-Torres-Quevedo, C., Arnaouteli, S., Riquelme-Dominguez, L., Romanowski, A., . . . Doitsidou, M. (2020). Probiotic Bacillus subtilis Protects against α-Synuclein Aggregation in C. elegans. Cell Reports, 30(2), 367-380.e367. doi: https://doi.org/10.1016/j.celrep.2019.12.078.

 

Han, B., Bellemer, A., & Koelle, M. R. (2015). An Evolutionarily Conserved Switch in Response to GABA Affects Development and Behavior of the Locomotor Circuit of Caenorhabditis elegans. Genetics, 199(4), 1159-1172. doi: 10.1534/genetics.114.173963. http://www.genetics.org/content/199/4/1159.abstract

 

Hardaway, J. A., Sturgeon, S. M., Snarrenberg, C. L., Li, Z., Xu, X. S., Bermingham, D. P., . . . Carvelli, L. (2015). Glial Expression of the Caenorhabditis elegans Gene swip-10 Supports Glutamate Dependent Control of Extrasynaptic Dopamine Signaling. The Journal of Neuroscience, 35(25), 9409-9423. doi. http://www.jneurosci.org/content/35/25/9409.short

 

Hill, T. (2017). Ephrin Receptors, AIY Interneuron Physiology, and Behavior. doi. http://digitalcommons.kennesaw.edu/integrbiol_etd/22/

 

Hsueh, Y.-P., Gronquist, M. R., Schwarz, E. M., Nath, R. D., Lee, C.-H., Gharib, S., . . . Sternberg, P. W. (2017). Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. [JOUR]. eLife, 6, e20023. doi: 10.7554/eLife.20023. https://dx.doi.org/10.7554/eLife.20023

 

Kosmaczewski, S. G., Han, S. M., Han, B., Irving Meyer, B., Baig, H. S., Athar, W., . . . Hammarlund, M. (2015). RNA ligation in neurons by RtcB inhibits axon regeneration. Proceedings of the National Academy of Sciences, 112(27), 8451-8456. doi: 10.1073/pnas.1502948112. http://www.pnas.org/content/112/27/8451.abstract

 

Kow, R. L., Strovas, T. J., McMillan, P. J., Jacobi, A. M., Behlke, M. A., Saxton, A. D., . . . Kraemer, B. C. (2021). Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes. Neurobiology of Disease, 147, 105148. doi: https://doi.org/10.1016/j.nbd.2020.105148.

 

Leung, H.-H., Liang, C., Marcotte, D., & McEachern, H. (2015). Effect of salinity on the locomotion of Caenorhabditis elegans. The Expedition, 4. doi. http://ojs.library.ubc.ca/index.php/expedition/article/view/186394

 

Li, G., Gong, J., Liu, J., Liu, J., Li, H., Hsu, A.-L., . . . Xu, X. Z. S. (2019). Genetic and pharmacological interventions in the aging motor nervous system slow motor aging and extend life span in C. elegans. Science Advances, 5(1), eaau5041. doi: 10.1126/sciadv.aau5041. http://advances.sciencemag.org/content/5/1/eaau5041.abstract

 

Li, J., Li, D., Yang, Y., Xu, T., Li, P., & He, D. (2015). Acrylamide induces locomotor defects and degeneration of dopamine neurons in Caenorhabditis elegans. Journal of Applied Toxicology, n/a-n/a. doi: 10.1002/jat.3144. http://dx.doi.org/10.1002/jat.3144

 

Liu, H., Yang, W., Wu, T., Duan, F., Soucy, E., Jin, X., & Zhang, Y. (2018). Cholinergic Sensorimotor Integration Regulates Olfactory Steering. Neuron. doi: https://doi.org/10.1016/j.neuron.2017.12.003. https://www.sciencedirect.com/science/article/pii/S0896627317311261

 

Lyu, S., Doroodchi, A., Xing, H., Sheng, Y., DeAndrade, M. P., Yang, Y., . . . Li, Y. (2020). BTBD9 and dopaminergic dysfunction in the pathogenesis of restless legs syndrome. Brain Structure and Function. doi: 10.1007/s00429-020-02090-x. https://doi.org/10.1007/s00429-020-02090-x

 

Mah, M. W., Mitha, I., Trinh, A., & Wu, D. (2017). Effect of NaCl concentration on the mid-body movement of Caenorhabditis elegans. The Expedition, 6. doi. http://ojs.library.ubc.ca/index.php/expedition/article/view/189083

 

Malvar, S., Gontijo, R., Carmo, B., & Cunha, F. (2017). On the kinematics-wave motion of living particles in suspension. Biomicrofluidics, 11(4), 044112. doi. http://aip.scitation.org/doi/abs/10.1063/1.4997715

 

Martin, J., Oka, Y., Pabla, P., & Qubain, O. (2017). The effect of temperature on the locomotion of Caenorhabditis elegans. The Expedition, 6. doi. http://ojs.library.ubc.ca/index.php/expedition/article/view/189099

 

Martinez, B. A., Kim, H., Ray, A., Caldwell, G. A., & Caldwell, K. A. (2015). A bacterial metabolite induces glutathione-tractable proteostatic damage, proteasomal disturbances, and PINK1-dependent autophagy in C. elegans. [Original Article]. Cell Death Dis, 6, e1908. doi: 10.1038/cddis.2015.270. http://dx.doi.org/10.1038/cddis.2015.270

 

Meneely, P. M., Dahlberg, C. L., & Rose, J. K. (2019). Working with Worms: Caenorhabditis elegans as a Model Organism. Current Protocols Essential Laboratory Techniques, 19(1), e35. doi: 10.1002/cpet.35. https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpet.35

 

Morales-Zavala, F., Arriagada, H., Hassan, N., Velasco, C., Riveros, A., Álvarez, A. R., . . . Kogan, M. J. (2017). Peptide multifunctionalized gold nanorods decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer's disease. Nanomedicine: Nanotechnology, Biology and Medicine. doi: https://doi.org/10.1016/j.nano.2017.06.013. http://www.sciencedirect.com/science/article/pii/S1549963417301211

 

Nagarajan, A., Ning, Y., Reisner, K., Buraei, Z., Larsen, J. P., Hobert, O., & Doitsidou, M. (2014). Progressive Degeneration of Dopaminergic Neurons through TRP Channel-Induced Cell Death. The Journal of Neuroscience, 34(17), 5738-5746. doi. http://www.jneurosci.org/content/34/17/5738.short

 

O’Donnell, M. P., Chao, P.-H., Kammenga, J. E., & Sengupta, P. (2018). Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLoS genetics, 14(2), e1007213. doi. https://www.ncbi.nlm.nih.gov/pubmed/29415022

 

Polli, J. R., Dobbins, D. L., Kobet, R. A., Farwell, M. A., Zhang, B., Lee, M.-H., & Pan, X. (2014). Drug-dependent behaviors and nicotinic acetylcholine receptor expressions in Caenorhabditis elegans following chronic nicotine exposure. NeuroToxicology, (0). doi: http://dx.doi.org/10.1016/j.neuro.2014.12.005.

 

Raj, V., Nair, A., & Thekkuveettil, A. (2021). Manganese exposure during early larval stages of C. elegans causes learning disability in the adult stage. Biochemical and Biophysical Research Communications, 568, 89-94. doi: https://doi.org/10.1016/j.bbrc.2021.06.073.

 

Ramachandran, S., Banerjee, N., Bhattacharya, R., Touroutine, D., Lambert, C. M., Schoofs, L., . . . Francis, M. M. (2020). A conserved neuropeptide system links head and body motor circuits to enable adaptive behavior. bioRxiv, 2020.2004.2027.064550. doi: 10.1101/2020.04.27.064550. https://www.biorxiv.org/content/biorxiv/early/2020/04/28/2020.04.27.0645...

 

Ramachandran, S., Banerjee, N., Bhattacharya, R., Touroutine, D., Lambert, C. M., Schoofs, L., . . . Francis, M. M. (2020). A conserved neuropeptide system links head and body motor circuits to enable adaptive behavior. bioRxiv, 2020.2004.2027.064550. doi: 10.1101/2020.04.27.064550. http://biorxiv.org/content/early/2020/04/28/2020.04.27.064550.abstract

 

Rendon-Nava, D., Mendoza-Espinosa, D., Negron-Silva, G. E., Valdez-Calderon, A., Martinez-Torres, A., Tellez-Arreola, J. L., & Gonzalez-Montiel, S. (2017). Chrysin functionalized NHC-Au(I) complexes: Synthesis, characterization and effects on the nematode Caenorhabditis elegans. [10.1039/C6NJ03299K]. New Journal of Chemistry. doi: 10.1039/c6nj03299k. http://dx.doi.org/10.1039/C6NJ03299K

 

Rochester, J. D., Tanner, P. C., Sharp, C. S., Andralojc, K. M., & Updike, D. L. (2017). PQN-75 is expressed in the pharyngeal gland cells of Caenorhabditis elegans and is dispensable for germline development. [10.1242/bio.027987]. Biology Open, 6(9), 1355. doi. http://bio.biologists.org/content/6/9/1355.abstract

 

Roussel, N., Sprenger, J., Tappan, S. J., & Glaser, J. R. (2014). Robust tracking and quantification of C. elegans body shape and locomotion through coiling, entanglement, and omega bends. Worm, 3(4), e982437. doi: 10.4161/21624054.2014.982437. http://dx.doi.org/10.4161/21624054.2014.982437

 

Sakamoto, K., Soh, Z., Suzuki, M., Iino, Y., & Tsuji, T. (2021). Forward and backward locomotion patterns in C. elegans generated by a connectome-based model simulation. Scientific Reports, 11(1), 13737. doi: 10.1038/s41598-021-92690-2. https://doi.org/10.1038/s41598-021-92690-2

 

Salzberg, Y., Pechuk, V., Gat, A., Setty, H., Sela, S., & Oren-Suissa, M. (2020). Synaptic Protein Degradation Controls Sexually Dimorphic Circuits through Regulation of DCC/UNC-40. Current Biology. doi: https://doi.org/10.1016/j.cub.2020.08.002.

 

Shen, P., Hsieh, T.-H., Yue, Y., Sun, Q., Clark, J. M., & Park, Y. (2017). Deltamethrin increases the fat accumulation in 3T3-L1 adipocytes and Caenorhabditis elegans. Food and Chemical Toxicology, 101, 149-156. doi: http://dx.doi.org/10.1016/j.fct.2017.01.015.

 

Shen, P., Kershaw, J. C., Yue, Y., Wang, O., Kim, K.-H., McClements, D. J., & Park, Y. (2018). Effects of conjugated linoleic acid (CLA) on fat accumulation, activity, and proteomics analysis in Caenorhabditis elegans. Food Chemistry, 249, 193-201. doi: https://doi.org/10.1016/j.foodchem.2018.01.017.

 

Shen, P., Yue, Y., Kim, K.-H., & Park, Y. (2017). Piceatannol Reduces Fat Accumulation in Caenorhabditis elegans. Journal of Medicinal Food. doi: 10.1089/jmf.2016.0179. https://doi.org/10.1089/jmf.2016.0179

 

Shen, P., Yue, Y., Sun, Q., Kasireddy, N., Kim, K.-H., & Park, Y. (2017). Piceatannol extends the lifespan of Caenorhabditis elegans via DAF-16. BioFactors, n/a-n/a. doi: 10.1002/biof.1346. http://dx.doi.org/10.1002/biof.1346

 

Shepherd, E., Greiner, S. P., & Bowdridge, S. (2020). Characterization of ovine monocyte activity when cultured with Haemonchus contortus larvae in vitro. Parasite Immunology, n/a(n/a), e12773. doi: 10.1111/pim.12773. https://onlinelibrary.wiley.com/doi/abs/10.1111/pim.12773

 

Shuai, X., Bailey-Brock, J. H., & Lin, D. T. (2014). Spatio-temporal changes in trophic categories of infaunal polychaetes near the four wastewater ocean outfalls on Oahu, Hawaii. Water Research, (0). doi: http://dx.doi.org/10.1016/j.watres.2014.03.058.

 

Sun, Q., Yue, Y., Shen, P., Yang, J. J., & Park, Y. (2016). Cranberry Product Decreases Fat Accumulation in Caenorhabditis elegans. Journal of Medicinal Food. doi: 10.1089/jmf.2015.0133. http://dx.doi.org/10.1089/jmf.2015.0133

 

Sutphin, G. L., Backer, G., Sheehan, S., Bean, S., Corban, C., Liu, T., . . . Aging Research in Genomic Epidemiology Consortium Gene Expression Working, G. (2017). Caenorhabditis elegans orthologs of human genes differentially expressed with age are enriched for determinants of longevity. Aging Cell, n/a-n/a. doi: 10.1111/acel.12595. http://dx.doi.org/10.1111/acel.12595

 

Téllez-Arreola, J., Valdez-Calderón, A., González-Montiel, S., Martinez-Torres, A., & Hernandez, A. (2019). Some effects of a chrysin bromide-derivative on GABA-A receptors and on Caenorhabditis elegans. Europe PMC. doi. https://europepmc.org/fulltext/ctx/m1023

 

Vozdek, R., Long, Y., & Ma, D. K. (2018). The receptor tyrosine kinase HIR-1 coordinates HIF-independent responses to hypoxia and extracellular matrix injury. [10.1126/scisignal.aat0138]. Science Signaling, 11(550). doi. http://stke.sciencemag.org/content/11/550/eaat0138.abstract

 

Weeks, J. C., Roberts, W. M., Leasure, C., Suzuki, B. M., Robinson, K. J., Currey, H., . . . Liachko, N. F. (2018). Sertraline, Paroxetine, and Chlorpromazine Are Rapidly Acting Anthelmintic Drugs Capable of Clinical Repurposing. Scientific Reports, 8(1), 975. doi: 10.1038/s41598-017-18457-w. https://doi.org/10.1038/s41598-017-18457-w

 

Woldemariam, S., Nagpal, J., Hill, T., Li, J., Schneider, M. W., Shankar, R., . . . Etoile, N. (2019). Using a Robust and Sensitive GFP-Based cGMP Sensor for Real Time Imaging in Intact Caenorhabditis elegans. Genetics, genetics.302392.302019. doi: 10.1534/genetics.119.302392. http://www.genetics.org/content/early/2019/07/22/genetics.119.302392.abs...

 

Wu, X., Al-Amin, M., Zhao, C., An, F., Wang, Y., Huang, Q., . . . Song, H. (2020). Catechinic acid, a natural polyphenol compound, extends the lifespan of Caenorhabditis elegans via mitophagy pathways. [10.1039/D0FO00694G]. Food & Function. doi: 10.1039/d0fo00694g. http://dx.doi.org/10.1039/D0FO00694G

 

Wu, X., Mohammad, A., Zhao, C., An, F., Wang, Y., Huang, Q., . . . Song, H. (2020). Catechinic acid, a natural polyphenols compound, extends the lifespan of Caenorhabditis elegans via mitophagy pathways. [10.1039/D0FO00694G]. Food & Function. doi: 10.1039/d0fo00694g. http://dx.doi.org/10.1039/D0FO00694G

 

Xiao, R., Chun, L., Ronan, Elizabeth A., Friedman, David I., Liu, J., & Xu, X. Z. S. (2015). RNAi Interrogation of Dietary Modulation of Development, Metabolism, Behavior, and Aging in C. elegans. Cell Reports, (0). doi: http://dx.doi.org/10.1016/j.celrep.2015.04.024.

 

Xu, T., Li, P., Wu, S., Lei, L., & He, D. (2017). Tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloropropyl) phosphate (TCPP) induce locomotor deficits and dopaminergic degeneration in Caenorhabditis elegans. [10.1039/C6TX00306K]. Toxicology Research. doi: 10.1039/c6tx00306k. http://dx.doi.org/10.1039/C6TX00306K

 

Xu, T., Zhang, M., Hu, J., Li, Z., Wu, T., Bao, J., . . . He, D. (2017). Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements. Chemosphere, 181, 55-62. doi: https://doi.org/10.1016/j.chemosphere.2017.04.068.

 

Yue, Y., Li, S., Qian, Z., Pereira, R. F., Lee, J., Doherty, J. J., . . . Park, Y. (2020). Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans. Food and Chemical Toxicology, 111695. doi: https://doi.org/10.1016/j.fct.2020.111695.

 

Yue, Y., Li, S., Qian, Z., Pereira, R. F., Lee, J., Doherty, J. J., . . . Park, Y. (2020). Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans. Food and Chemical Toxicology, 145, 111695. doi: https://doi.org/10.1016/j.fct.2020.111695.

 

Yue, Y., Li, S., Qian, Z., Pereira, R. F., Lee, J., Doherty, J. J., . . . Park, Y. (2020). Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans. Food and Chemical Toxicology, 145, 111695. doi: https://doi.org/10.1016/j.fct.2020.111695.

 

Yue, Y., Shen, P., Chang, A. L., Qi, W., Kim, K.-H., Kim, D., & Park, Y. (2019). trans-Trismethoxy resveratrol decreased fat accumulation dependent on fat-6 and fat-7 in Caenorhabditis elegans. Food & Function. doi. https://pubs.rsc.org/en/content/articlelanding/2019/fo/c9fo00778d#!divAb...

 

Yue, Y., Shen, P., Xu, Y., & Park, Y. (2018). p-Coumaric acid improves oxidative and osmosis stress responses in Caenorhabditis elegans. Journal of the Science of Food and Agriculture, 0(ja). doi: doi:10.1002/jsfa.9288. https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.9288

 

Yue, Y., Wang, J., Shen, P., Kim, K.-H., & Park, Y. (2021). Methylglyoxal influences development of Caenorhabditis elegans via lin-41-dependent pathway. Food and Chemical Toxicology, 152, 112238. doi: https://doi.org/10.1016/j.fct.2021.112238. https://www.sciencedirect.com/science/article/pii/S0278691521002714

 

Yue, Y., Wang, J., Shen, P., Kim, K.-H., & Park, Y. (2021). Methylglyoxal influences development of Caenorhabditis elegans via lin-41-dependent pathway. Food and Chemical Toxicology, 152, 112238. doi: https://doi.org/10.1016/j.fct.2021.112238. https://www.sciencedirect.com/science/article/pii/S0278691521002714

 

Zhang, T., Xie, L., Liu, R., Chang, M., Jin, Q., & Wang, X. (2021). Differentiated 4,4-dimethylsterols from vegetable oils reduce fat deposition dependent on NHR-49/SCD pathway in Caenorhabditis elegans. [10.1039/D1FO00669J]. Food & Function. doi: 10.1039/d1fo00669j. http://dx.doi.org/10.1039/D1FO00669J