Impaired AMPARs translocation into dendritic spines with motor skill learning in the Fragile X mouse model. eneuro: ENEURO.0364-0322.2023. >> View Publication
Clustered synapses develop in distinct dendritic domains in visual cortex before eye opening. bioRxiv: 2023.2003.2002.530772. >> View Publication
Probing inter-areal computations with a cellular resolution two-photon holographic mesoscope. bioRxiv: 2023.2003.2002.530875. >> View Publication
Ding, Z., P. G. Fahey, et al. (2023). “Functional connectomics reveals general wiring rule in mouse visual cortex.” bioRxiv: 2023.2003.2013.531369. https://doi.org/10.1101/2023.03.13.531369
Ferguson, K. A., J. Salameh, et al. (2023). “VIP interneurons regulate cortical size tuning and visual perception.” bioRxiv: 2023.2003.2014.532664. https://doi.org/10.1101/2023.03.14.532664
Suresh, A. and A. Dunaevsky (2023). “Impaired AMPARs translocation into dendritic spines with motor skill learning in the Fragile X mouse model.” eneuro: ENEURO.0364-0322.2023. https://doi.org/10.1523/ENEURO.0364-22.2023
Leighton, A. H., J. E. Cheyne, et al. (2023). “Clustered synapses develop in distinct dendritic domains in visual cortex before eye opening.” bioRxiv: 2023.2003.2002.530772. https://doi.org/10.1101/2023.03.02.530772
Abdeladim, L., H. Shin, et al. (2023). “Probing inter-areal computations with a cellular resolution two-photon holographic mesoscope.” bioRxiv: 2023.2003.2002.530875. https://doi.org/10.1101/2023.03.02.530875
LaFosse, P. K., Z. Zhou, et al. (2023). “Bicistronic expression of a high-performance calcium indicator and opsin for all-optical stimulation and imaging at cellular resolution.” eneuro: ENEURO.0378-0322.2023. https://doi.org/10.1523/ENEURO.0378-22.2023
Binder, N. F., M. E. Amki, et al. (2023). “Leptomeningeal collaterals regulate reperfusion in ischemic stroke.” bioRxiv: 2023.2002.2025.529915. https://doi.org/10.1101/2023.02.25.529915
Bojarskaite, L., A. Vallet, et al. (2023). “Sleep cycle-dependent vascular dynamics in male mice and the predicted effects on perivascular cerebrospinal fluid flow and solute transport.” Nature Communications 14(1): 953. https://doi.org/10.1038/s41467-023-36643-5
Niraula, S., W. L. Hauser, et al. (2023). “Repeated passive visual experience modulates spontaneous and novelty-evoked neural activity.” bioRxiv: 2023.2002.2021.529278. https://doi.org/10.1101/2023.02.21.529278
Yang, Y., H. Shen, et al. (2023). “Learning-induced reorganization of neuronal subnetworks in the primary sensory cortex.” bioRxiv: 2023.2002.2021.529414. https://doi.org/10.1101/2023.02.21.529414
Carrillo-Reid, L., W. Yang, et al. (2023). Optical and Analytical Methods to Visualize and Manipulate Cortical Ensembles and Behavior. All-Optical Methods to Study Neuronal Function. E. Papagiakoumou. New York, NY, Springer US: 331-361. https://doi.org/10.1007/978-1-0716-2764-8_11
Clary, R. C., B. A. Jenkins, et al. (2023). “Spatiotemporal dynamics of sensory neuron and Merkel-cell remodeling are decoupled during epidermal homeostasis.” bioRxiv: 2023.2002.2014.528558. https://doi.org/10.1101/2023.02.14.528558
Costine-Bartell, B. A., L. Martinez-Ramirez, et al. (2023). “2-Photon imaging of fluorescent proteins in living swine.” bioRxiv: 2023.2002.2014.528533. https://doi.org/10.1101/2023.02.14.528533
Garrett, M., P. Groblewski, et al. (2023). “Stimulus novelty uncovers coding diversity in visual cortical circuits.” bioRxiv: 2023.2002.2014.528085. https://doi.org/10.1101/2023.02.14.528085
Gill, J. V., G. M. Lerman, et al. (2023). Illuminating Neural Computation Using Precision Optogenetics-Controlled Synthetic Perception. All-Optical Methods to Study Neuronal Function. E. Papagiakoumou. New York, NY, Springer US: 363-392. https://doi.org/10.1007/978-1-0716-2764-8_12
Murphy, S. C., L. Godenzini, et al. (2023). “Cocaine regulates sensory filtering in cortical pyramidal neurons.” Cell Reports 42(2). https://doi.org/10.1016/j.celrep.2023.112122
Wang, X., P. A. Roberts, et al. (2023). “Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina.” Cell Reports 42(2). https://doi.org/10.1016/j.celrep.2023.112055
Funamizu, A., F. Marbach, et al. (2023). “Stable sound decoding despite modulated sound representation in the auditory cortex.” bioRxiv: 2023.2001.2031.526457. https://doi.org/10.1101/2023.01.31.526457
McClain, S. P., X. Ma, et al. (2023). “<em>In vivo</em> photopharmacology with light-activated opioid drugs.” bioRxiv: 2023.2002.2002.526901. https://doi.org/10.1101/2023.02.02.526901
Thome, C., J. M. Janssen, et al. (2023). “Live imaging of excitable axonal microdomains in ankyrin-G-GFP mice.” bioRxiv: 2023.2002.2001.525891. https://doi.org/10.1101/2023.02.01.525891
Vaidya, S. P., R. A. Chitwood, et al. (2023). “The formation of an expanding memory representation in the hippocampus.” bioRxiv: 2023.2002.2001.526663. https://doi.org/10.1101/2023.02.01.526663
Ferrer Ortas, J., P. Mahou, et al. (2023). “Label-free imaging of red blood cells and oxygenation with color third-order sum-frequency generation microscopy.” Light: Science & Applications 12(1): 29. https://doi.org/10.1038/s41377-022-01064-4
Hanafy, A. S., P. Steinlein, et al. (2023). “Subcellular analysis of blood-brain barrier function by micro-impalement of vessels in acute brain slices.” Nature Communications 14(1): 481. https://doi.org/10.1038/s41467-023-36070-6
Kline, A. M., D. A. Aponte, et al. (2023). “Distinct nonlinear spectrotemporal integration in primary and secondary auditory cortices.” bioRxiv: 2023.2001.2025.525588. https://doi.org/10.1101/2023.01.25.525588
Komorowska-Müller, J. A., A.-K. Gellner, et al. (2023). “Chronic low-dose Δ9-tetrahydrocannabinol (THC) treatment stabilizes dendritic spines in 18-month-old mice.” Scientific Reports 13(1): 1390. https://doi.org/10.1038/s41598-022-27146-2
Yao, P., R. Liu, et al. (2023). “Guide to the construction and use of an adaptive optics two-photon microscope with direct wavefront sensing.” bioRxiv: 2023.2001.2024.525307. https://doi.org/10.1101/2023.01.24.525307
Chen, X., D. A. Wolfe, et al. (2023). “Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates.” bioRxiv: 2023.2001.2012.523844. https://doi.org/10.1101/2023.01.12.523844
Konstantinos, N. B., X. Lin, et al. (2023). Deep tissue imaging with multiphoton microscopy in the short-wavelength infrared windows. Proc.SPIE. https://doi.org/10.1117/12.2647553
Mano, O., M. Choi, et al. (2023). “Long timescale anti-directional rotation in <em>Drosophila</em> optomotor behavior.” bioRxiv: 2023.2001.2006.523055. https://doi.org/10.1101/2023.01.06.523055
Tanaka, R., B. Zhou, et al. (2023). “<em>Drosophila</em> integrates visual evidence and counterevidence in self motion estimation.” bioRxiv: 2023.2001.2004.522814. https://doi.org/10.1101/2023.01.04.522814
Wu, X., W. Xu, et al. (2023). “Development of Multiomics <em>in situ</em> Pairwise Sequencing (MiP-Seq) for Single-cell Resolution Multidimensional Spatial Omics.” bioRxiv: 2023.2001.2007.523058. https://doi.org/10.1101/2023.01.07.523058
Campbell, E. P., A. A. Abushawish, et al. (2023). “Electrical signals in the ER are cell type and stimulus specific with extreme spatial compartmentalization in neurons.” Cell Reports 42(1). https://doi.org/10.1016/j.celrep.2022.111943
Johnson, E., M. Clark, et al. (2022). “Graded spikes differentially signal neurotransmitter input in cerebrospinal fluid contacting neurons of the mouse spinal cord.” iScience: 105914. https://doi.org/10.1016/j.isci.2022.105914
Makino, H. (2022). “Arithmetic value representation for hierarchical behavior composition.” Nature Neuroscience. https://doi.org/10.1038/s41593-022-01211-5
Stobart, J. L., E. Erlebach, et al. (2022). “Altered hemodynamics and vascular reactivity in a mouse model with severe pericyte deficiency.” Journal of Cerebral Blood Flow & Metabolism: 0271678X221147366. https://doi.org/10.1177/0271678X221147366
Zhou, Q., Z. Chen, et al. (2022). “Three-dimensional wide-field fluorescence microscopy for transcranial mapping of cortical microcirculation.” Nature Communications 13(1): 7969. https://doi.org/10.1038/s41467-022-35733-0
Xia, M.-C., J. Guo, et al. (2022). “Dexmedetomidine Preserves Activity of Neurons in Primary Somatosensory Cortex Compared to Propofol and Ketamine.” Brain Sciences 12(12): 1720. https://doi.org/10.3390/brainsci12121720
Kubitschke, M., M. Müller, et al. (2022). “Next generation genetically encoded fluorescent sensors for serotonin.” Nature Communications 13(1): 7525. https://doi.org/10.1038/s41467-022-35200-w
Fisher, Y. E., M. Marquis, et al. (2022). “Dopamine promotes head direction plasticity during orienting movements.” Nature 612(7939): 316-322. https://doi.org/10.1038/s41586-022-05485-4
Kole, J., H. Ahmed, et al. (2022). Live-Cell Imaging: A Balancing Act Between Speed, Sensitivity, and Resolution. Principles of Light Microscopy: From Basic to Advanced. V. Nechyporuk-Zloy. Cham, Springer International Publishing: 139-172. https://doi.org/10.1007/978-3-031-04477-9_6
Marquis, M. and R. I. Wilson (2022). “Locomotor and olfactory responses in dopamine neurons of the Drosophila superior-lateral brain.” Current Biology. https://doi.org/10.1016/j.cub.2022.11.008
Eleftheriou, A., L. Ravotto, et al. (2022). “Simultaneous dynamic glucose-enhanced (DGE) MRI and fiber photometry measurements of glucose in the healthy mouse brain.” NeuroImage: 119762. https://doi.org/10.1016/j.neuroimage.2022.119762
Lin, J., Z. Cheng, et al. (2022). “Optical gearbox enabled versatile multiscale high-throughput multiphoton functional imaging.” Nature Communications 13(1): 6564. https://doi.org/10.1038/s41467-022-34472-6
Wang, H. C., A. M. LeMessurier, et al. (2022). “Tuning instability of non-columnar neurons in the salt-and-pepper whisker map in somatosensory cortex.” Nature Communications 13(1): 6611. https://doi.org/10.1038/s41467-022-34261-1
Massengill, C. I., L. Bayless-Edwards, et al. (2022). “Sensitive genetically encoded sensors for population and subcellular imaging of cAMP in vivo.” Nature Methods. https://doi.org/10.1038/s41592-022-01646-5
Svara, F., D. Förster, et al. (2022). “Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain.” Nature Methods. https://doi.org/10.1038/s41592-022-01621-0
Uguz, I. and K. L. Shepard (2022). “Spatially controlled, bipolar, cortical stimulation with high-capacitance, mechanically flexible subdural surface microelectrode arrays.” Sci Adv 8(42): 19. DOI: 10.1126/sciadv.abq6354
Matteucci, G., M. Guyoton, et al. (2022). “Cortical sensory processing across motivational states during goal-directed behavior.” Neuron. https://doi.org/10.1016/j.neuron.2022.09.032
Li, X., Y. Li, et al. (2022). “Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit.” Nature Biotechnology. https://doi.org/10.1038/s41587-022-01450-8
Franke, K., K. F. Willeke, et al. (2022). “State-dependent pupil dilation rapidly shifts visual feature selectivity.” Nature 610(7930): 128-134. https://doi.org/10.1038/s41586-022-05270-3
Polesel, M., M. Kaminska, et al. (2022). “Spatiotemporal organisation of protein processing in the kidney.” Nature Communications 13(1): 5732. https://doi.org/10.1038/s41467-022-33469-5
Hagai, H.-G., G. Lior, et al. (2022). “Versatile software and hardware combo enabling photon counting acquisition and real-time display for multiplexing, 2D and continuous 3D two-photon imaging applications.” Neurophotonics 9(3): 031920. https://doi.org/10.1117/1.NPh.9.3.031920
Kanamori, T. and T. D. Mrsic-Flogel (2022). “Independent response modulation of visual cortical neurons by attentional and behavioral states.” Neuron. https://doi.org/10.1016/j.neuron.2022.08.028
Rabinovich, R. J., D. D. Kato, et al. (2022). “Learning enhances encoding of time and temporal surprise in mouse primary sensory cortex.” Nature Communications 13(1): 5504. https://doi.org/10.1038/s41467-022-33141-y
Li, M., H. Zhou, et al. (2022). “Activation of VIP interneurons in the prefrontal cortex ameliorates neuropathic pain aversiveness.” Cell Reports 40(11): 111333. https://doi.org/10.1016/j.celrep.2022.111333
Au – Yuan, Y. and F. Au – Lu (2022). “A Flexible Chamber for Time-Lapse Live-Cell Imaging with Stimulated Raman Scattering Microscopy.” JoVE(186): e64449. doi:10.3791/64449 (2022).
DePiero, V. J. and B. G. Borghuis (2022). “Phase advancing is a common property of multiple neuron classes in the mouse retina.” eneuro: ENEURO.0270-0222.2022. https://doi.org/10.1523/ENEURO.0270-22.2022
Pettit, N. L., E.-L. Yap, et al. (2022). “Fos ensembles encode and shape stable spatial maps in the hippocampus.” Nature. https://doi.org/10.1038/s41586-022-05113-1
Spampinato, G. L. B., E. Ronzitti, et al. (2022). “All-optical inter-layers functional connectivity investigation in the mouse retina.” Cell Reports Methods 2(8): 100268. https://doi.org/10.1016/j.crmeth.2022.100268
Liu, Z., X. Lu, et al. (2022). “Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy.” Cell. https://doi.org/10.1016/j.cell.2022.07.013
Moroni, M., M. Brondi, et al. (2022). “SmaRT2P: a software for generating and processing smart line recording trajectories for population two-photon calcium imaging.” Brain Informatics 9(1): 18. https://doi.org/10.1186/s40708-022-00166-4
Yates, J. L. and B. Scholl Unraveling Functional Diversity of Cortical Synaptic Architecture Through the Lens of Population Coding, Front Synaptic Neurosci. 2022 Jul 26;14:888214. doi: 10.3389/fnsyn.2022.888214. eCollection 2022.
Aggarwal, A., R. Liu, et al. (2022). “Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission.” bioRxiv: 2022.2002.2013.480251. https://doi.org/10.1101/2022.02.13.480251
Voitov, I. and T. D. Mrsic-Flogel (2022). “Cortical feedback loops bind distributed representations of working memory.” Nature. https://doi.org/10.1038/s41586-022-05014-3
Flores-Valle, A. and J. D. Seelig (2022). “Axial motion estimation and correction for simultaneous multi-plane two-photon calcium imaging.” Biomed Opt Express 13(4): 2035-2049. DOI: 10.1364/BOE.445775
Rodriguez-Rozada, S., J. Wietek, et al. (2022). “Aion is a bistable anion-conducting channelrhodopsin that provides temporally extended and reversible neuronal silencing.” Communications Biology 5(1): 687. https://doi.org/10.1038/s42003-022-03636-x
Amo, R., S. Matias, et al. (2022). “A gradual temporal shift of dopamine responses mirrors the progression of temporal difference error in machine learning.” Nature Neuroscience. https://doi.org/10.1038/s41593-022-01109-2
Fieblinger, T., A. Perez-Alvarez, et al. (2022). “Presynaptic cGMP sets synaptic strength in the striatum and is important for motor learning.” EMBO reports n/a(n/a): e54361. https://doi.org/10.15252/embr.202154361
Tseng, S.-Y., S. N. Chettih, et al. (2022). “Shared and specialized coding across posterior cortical areas for dynamic navigation decisions.” Neuron. https://doi.org/10.1016/j.neuron.2022.05.012
Broom, E., V. Imbriotis, et al. (2022). “Recruitment of frontal sensory circuits during visual discrimination.” Cell Reports 39(10): 110932. https://doi.org/10.1016/j.celrep.2022.110932
Cody, P. A. and T. Tzounopoulos (2022). “Neuromodulatory mechanisms underlying contrast gain control in mouse auditory cortex.” The Journal of Neuroscience: JN-RM-2054-2021. https://doi.org/10.1523/JNEUROSCI.2054-21.2022
Hedrick, N. G., Z. Lu, et al. (2022). “Learning binds new inputs into functional synaptic clusters via spinogenesis.” Nature Neuroscience 25(6): 726-737. https://doi.org/10.1038/s41593-022-01086-6
Suhaimi, A., W. H. Lim Amos, et al. “Representation learning in the artificial and biological neural networks underlying sensorimotor integration.” Science Advances 8(22): eabn0984. DOI: 10.1126/sciadv.abn0984
Kannan, M., S. Singh, et al. (2022). “HIV-1 Tat induced microglial EVs leads to neuronal synaptodendritic injury: microglia-neuron cross-talk in NeuroHIV.” Extracellular Vesicles and Circulating Nucleic Acids 3(2): 133-149. http://dx.doi.org/10.20517/evcna.2022.14
Holmes, M. E., S. Kiderlen, et al. (2022). “Next-Generation Laser Scanning Multiphoton Microscopes are Turnkey, Portable, and Industry-Ready.” Microscopy Today 30(3): 16-23. doi:10.1017/S1551929522000657
Fei, X., G. Monique, et al. (2022). Deep confocal fluorescence microscopy with single-photon superconducting nanowire detector. Proc.SPIE. https://doi.org/10.1117/12.2620775
Li, J., Z. Zhang, et al. (2022). “A potent luminogen with NIR-IIb excitable AIE features for ultradeep brain vascular and hemodynamic three-photon imaging.” Biomaterials 287: 121612. https://doi.org/10.1016/j.biomaterials.2022.121612
Koveal, D., P. C. Rosen, et al. (2022). “A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors.” Nature Communications 13(1): 2919. https://doi.org/10.1038/s41467-022-30685-x
Osorno, T., S. Rudolph, et al. (2022). “Candelabrum cells are ubiquitous cerebellar cortex interneurons with specialized circuit properties.” Nature Neuroscience. https://doi.org/10.1038/s41593-022-01057-x
Sun, L., C.-K. Tong, et al. (2022). “Targeted ubiquitination of sensory neuron calcium channels reduces the development of neuropathic pain.” Proceedings of the National Academy of Sciences 119(20): e2118129119. https://doi.org/10.1073/pnas.2118129119
Moya-Díaz, J., B. James, et al. (2022). “Diurnal changes in the efficiency of information transmission at a sensory synapse.” Nature Communications 13(1): 2613. https://doi.org/10.1038/s41467-022-30202-0
Chen, X., Y. Du, et al. (2022). “Transcriptomic mapping uncovers Purkinje neuron plasticity driving learning.” Nature. https://doi.org/10.1038/s41586-022-04711-3
Erlebach, E., L. Ravotto, et al. (2022). “Measurement of cerebral oxygen pressure in living mice by two-photon phosphorescence lifetime microscopy.” STAR Protocols 3(2): 101370. https://doi.org/10.1016/j.xpro.2022.101370
Pettit, N. L., X. C. Yuan, et al. (2022). “Hippocampal place codes are gated by behavioral engagement.” Nature Neuroscience. https://doi.org/10.1038/s41593-022-01050-4
Hattori, R. and T. Komiyama (2022). “Longitudinal two-photon calcium imaging with ultra-large cranial window for head-fixed mice.” STAR Protocols 3(2): 101343. https://doi.org/10.1016/j.xpro.2022.101343
Georgiou, C., V. Kehayas, et al. (2022). “A subpopulation of cortical VIP-expressing interneurons with highly dynamic spines.” Communications Biology 5(1): 352. https://doi.org/10.1038/s42003-022-03278-z
Summers, M. T. and M. B. Feller (2022). “Distinct inhibitory pathways control velocity and directional tuning in the mouse retina.” Current Biology. https://doi.org/10.1016/j.cub.2022.03.054
Suzuki, N., M. L. S. Tantirigama, et al. (2022). “Fast and slow feedforward inhibitory circuits for cortical odor processing.” eLife 11: e73406. DOI: 10.7554/eLife.73406
Hösli, L., M. Zuend, et al. (2022). “Direct vascular contact is a hallmark of cerebral astrocytes.” Cell Reports 39(1): 110599. https://doi.org/10.1016/j.celrep.2022.110599
Fearey, B. C., L. Binkle, et al. (2022). “A glibenclamide-sensitive TRPM4-mediated component of CA1 excitatory postsynaptic potentials appears in experimental autoimmune encephalomyelitis.” Scientific Reports 12(1): 6000. https://doi.org/10.1038/s41598-022-09875-6
Ammer, G., R. M. Vieira, et al. (2022). “Anatomical distribution and functional roles of electrical synapses in Drosophila.” Current Biology. https://doi.org/10.1016/j.cub.2022.03.040
Formozov, A., M. Chini, et al. (2022). “Calcium Imaging and Electrophysiology of hippocampal Activity under Anesthesia and natural Sleep in Mice.” Scientific Data 9(1): 113. https://doi.org/10.1038/s41597-022-01244-2
Horgan, C. C., M. Jensen, et al. (2022). “Hybrid confocal Raman endomicroscopy for morpho-chemical tissue characterization.” Biomedical Optics Express 13(4): 2278-2285. https://doi.org/10.1364/BOE.449110
Zong, W., H. A. Obenhaus, et al. “Large-scale two-photon calcium imaging in freely moving mice.” Cell. https://doi.org/10.1016/j.cell.2022.02.017
Chen, K., Q. Hu, et al. (2022). “Inhibition of unfolded protein response prevents post-anesthesia neuronal hyperactivity and synapse loss in aged mice.” Aging Cell n/a(n/a): e13592. 10.1111/acel.13592
Livezey, J. A., P. S. Sachdeva, et al. (2022). “Not optimal, just noisy: the geometry of correlated variability leads to highly suboptimal sensory coding.” bioRxiv: 2022.2003.2008.483488. https://doi.org/10.1101/2022.03.08.483488
Park, A., V. Croset, et al. (2022). “Gliotransmission of D-serine promotes thirst-directed behaviors in Drosophila</em>.” bioRxiv: 2022.2003.2007.483255. https://doi.org/10.1101/2022.03.07.483255
Weiler, S., D. Guggiana Nilo, et al. (2022). “Orientation and direction tuning align with dendritic morphology and spatial connectivity in mouse visual cortex.” Current Biology. https://doi.org/10.1016/j.cub.2022.02.048
Hösli, L., N. Binini, et al. (2022). “Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning.” Cell Reports 38(10): 110484. https://doi.org/10.1016/j.celrep.2022.110484
Yildirim, M., C. Delepine, et al. (2022). “Label-free three-photon imaging of intact human cerebral organoids: tracking early events in brain development and deficits in Rett Syndrome.” bioRxiv: 2022.2002.2028.482282. https://doi.org/10.1101/2022.02.28.482282
Gellner, A.-K., A. Sitter, et al. (2022). “Stress vulnerability shapes disruption of motor cortical neuroplasticity.” Translational Psychiatry 12(1): 91. https://doi.org/10.1038/s41398-022-01855-8
Handley, E. E., L. A. Reale, et al. (2022). “Estrogen Enhances Dendrite Spine Function and Recovers Deficits in Neuroplasticity in the prpTDP-43A315T Mouse Model of Amyotrophic Lateral Sclerosis.” Molecular Neurobiology. https://doi.org/10.1007/s12035-022-02742-5
Heintz, T. G., A. J. Hinojosa, et al. (2022). “Opposite forms of adaptation in mouse visual cortex are controlled by distinct inhibitory microcircuits.” Nature Communications 13(1): 1031. 10.1038/s41467-022-28635-8
Turner, N. L., T. Macrina, et al. (2022). “Reconstruction of neocortex: Organelles, compartments, cells, circuits, and activity.” Cell. https://doi.org/10.1016/j.cell.2022.01.023
Murphy-Baum, B. L. and G. B. Awatramani (2022). “Parallel processing in active dendrites during periods of intense spiking activity.” Cell Reports 38(8): 110412. https://doi.org/10.1016/j.celrep.2022.110412
Xie, Y., A. T. Kuan, et al. (2022). “Astrocyte-neuron crosstalk through Hedgehog signaling mediates cortical synapse development.” Cell Reports 38(8): 110416. https://doi.org/10.1016/j.celrep.2022.110416
Ahn, S. J., N. E. Ruiz-Uribe, et al. (2020). “Label-free assessment of hemodynamics in individual cortical brain vessels using third harmonic generation microscopy.” Biomedical Optics Express 11(5): 2665-2678. 10.1364/boe.385848
Arkhipov, A., N. W. Gouwens, et al. (2018). “Visual physiology of the layer 4 cortical circuit in silico.” PLOS Computational Biology 14(11): e1006535. 10.1371/journal.pcbi.1006535
Baker, C. A., C. McKellar, et al. (2021). “Neural Network Organization for Courtship Song Feature Detection in Drosophila</em>.” bioRxiv: 2020.2010.2008.332148. 10.1101/2020.10.08.332148
Bakker, G.-J., S. Weischer, et al. (2022). “Intravital deep-tumor single-beam 3-photon, 4-photon, and harmonic microscopy.” eLife 11: e63776. 10.7554/eLife.63776
Bale, M. R., M. Bitzidou, et al. (2020). “Learning a tactile sequence induces selectivity to action decisions and outcomes in the mouse somatosensory cortex.” bioRxiv: 2020.2004.2017.037143. 10.1101/2020.04.17.037143
Barz, C. S., P. M. Garderes, et al. (2021). “Functional and Structural Properties of Highly Responsive Somatosensory Neurons in Mouse Barrel Cortex.” Cerebral Cortex 31(10): 4533-4553. 10.1093/cercor/bhab104
Bounds, H. A., M. Sadahiro, et al. (2021). “Multifunctional Cre-dependent transgenic mice for high-precision all-optical interrogation of neural circuits.” bioRxiv: 2021.2010.2005.463223. 10.1101/2021.10.05.463223
Deverett, B., S. A. Koay, et al. (2018). “A cerebellar role in evidence-guided decision-making.” bioRxiv: 343095. 10.1101/343095
Engelhard, B., J. Finkelstein, et al. (2018). “Specialized and spatially organized coding of sensory, motor, and cognitive variables in midbrain dopamine neurons.” bioRxiv: 456194. 10.1101/456194
Gaffield, M. A. and J. M. Christie (2021). “The cerebellum encodes and influences the initiation and termination of discontinuous movements.” bioRxiv: 2021.2006.2024.449622. 10.1101/2021.06.24.449622
Hong, S. Z., L. Mesik, et al. (2021). “Norepinephrine Potentiates and Serotonin Depresses Visual Cortical Responses by Transforming Eligibility Traces.” bioRxiv: 2021.2006.2022.449441. 10.1101/2021.06.22.449441
Klapoetke, N. C., A. Nern, et al. (2017). “Ultra-selective looming detection from radial motion opponency.” Nature 551(7679): 237-241. 10.1038/nature24626
Lyall, E. H., D. P. Mossing, et al. (2020). “Synthesis of higher order feature codes through stimulus-specific supra-linear summation.” bioRxiv: 2020.2006.2024.169359. 10.1101/2020.06.24.169359
Nagai, J., A. Bellafard, et al. (2021). “Specific and behaviorally consequential astrocyte Gq GPCR signaling attenuation in vivo with iβARK.” Neuron 109(14): 2256-2274.e2259. https://doi.org/10.1016/j.neuron.2021.05.023
Orlova, N., F. Najafi, et al. (2021). “Multiplane Mesoscope reveals distinct cortical interactions following expectation violations.” bioRxiv: 2020.2010.2006.328294. 10.1101/2020.10.06.328294
Pichler, P. and L. Lagnado (2018). “Hair cells with heterogeneous transfer characteristics encode mechanical stimuli in the lateral line of zebrafish.” bioRxiv: 261669. 10.1101/261669
Rübel, O., A. Tritt, et al. (2021). “The Neurodata Without Borders ecosystem for neurophysiological data science.” bioRxiv: 2021.2003.2013.435173. 10.1101/2021.03.13.435173
Sharma, A., A. Goring, et al. (2021). “Multiscale molecular profiling of pathological bone resolves sexually dimorphic control of extracellular matrix composition.” Disease Models & Mechanisms 14(3). 10.1242/dmm.048116
Shin, J. (2021). “Perirhinal feedback input controls neocortical memory formation via layer 1.”
Stein, I. S., T. C. Hill, et al. (2019). Two-Photon Glutamate Uncaging to Study Structural and Functional Plasticity of Dendritic Spines. Multiphoton Microscopy. E. Hartveit. New York, NY, Springer New York: 65-85. 10.1007/978-1-4939-9702-2_4
Takemura, S.-y., Y. Aso, et al. (2017). “A connectome of a learning and memory center in the adult Drosophila brain.” eLife 6: e26975. 10.7554/eLife.26975
Vierock, J., S. Rodriguez-Rozada, et al. (2021). “BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons.” Nature Communications 12(1): 4527. 10.1038/s41467-021-24759-5
Westermann, L. M., L. Fleischhauer, et al. (2020). “Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma.” Disease Models & Mechanisms 13(11). 10.1242/dmm.046425
Zhou, P., J. Reimer, et al. (2020). “EASE: EM-Assisted Source Extraction from calcium imaging data.” bioRxiv: 2020.2003.2025.007468. 10.1101/2020.03.25.007468
Aggarwal, A., R. Liu, et al. (2022). “Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission.” bioRxiv: 2022.2002.2013.480251. https://doi.org/10.1101/2022.02.13.480251
Bakker, G.-J., S. Weischer, et al. (2022). “Intravital deep-tumor single-beam 3-photon, 4-photon, and harmonic microscopy.” eLife 11: e63776. 10.7554/eLife.63776
Barbara, R., M. N. Kantharaju, et al. (2022). “PyZebraScope: an open-source platform for brain-wide neural activity imaging in zebrafish.” bioRxiv: 2022.2002.2013.480249. https://doi.org/10.1101/2022.02.13.480249
Adoff, M. D., J. R. Climer, et al. (2021). “The functional organization of excitatory synaptic input to place cells.” Nature Communications 12(1): 3558. 10.1038/s41467-021-23829-y
Afrashteh, N., S. Inayat, et al. (2021). “Spatiotemporal structure of sensory-evoked and spontaneous activity revealed by mesoscale imaging in anesthetized and awake mice.” Cell Reports 37(10): 110081. https://doi.org/10.1016/j.celrep.2021.110081
Au – Jongbloets, B. C., L. Au – Ma, et al. (2019). “Visualizing Protein Kinase A Activity In Head-fixed Behaving Mice Using In Vivo Two-photon Fluorescence Lifetime Imaging Microscopy.” JoVE(148): e59526. doi:10.3791/59526
Au – Wang, Z., S. Au – McCracken, et al. (2021). “Transpupillary Two-photon In vivo Imaging of the Mouse Retina.” JoVE(168): e61970. doi:10.3791/61970
Brown, J., I. Antón Oldenburg, et al. (2020). “Spatial integration during active tactile sensation drives elementary shape perception.” bioRxiv: 2020.2003.2016.994145. 10.1101/2020.03.16.994145
Chen, C., S. Agrawal, et al. (2021). “Functional architecture of neural circuits for leg proprioception in Drosophila.” Current Biology 31(23): 5163-5175.e5167. https://doi.org/10.1016/j.cub.2021.09.035
Cheng, Z., Y. Han, et al. (2021). “Probing neuronal functions with precise and targeted laser ablation in the living cortex.” Optica 8(12): 1559-1572. 10.1364/optica.433562
Churgin, M. A., D. Lavrentovich, et al. (2021). “Neural correlates of individual odor preference in Drosophila</em>.” bioRxiv: 2021.2012.2024.474127. 10.1101/2021.12.24.474127
Collins, L., L. Boddington, et al. (2021). “Vagus nerve stimulation induces widespread cortical and behavioral activation.” Current Biology 31(10): 2088-2098.e2083. https://doi.org/10.1016/j.cub.2021.02.049
Deverett, B., S. A. Koay, et al. (2018). “Cerebellar involvement in an evidence-accumulation decision-making task.” eLife 7: e36781. 10.7554/eLife.36781
Doron, G., N. Shin Jiyun, et al. (2020). “Perirhinal input to neocortical layer 1 controls learning.” Science 370(6523): eaaz3136. 10.1126/science.aaz3136
Dürst, C. D., J. S. Wiegert, et al. (2019). “High-speed imaging of glutamate release with genetically encoded sensors.” Nature Protocols 14(5): 1401-1424. 10.1038/s41596-019-0143-9
Engelhard, B., J. Finkelstein, et al. (2019). “Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons.” Nature 570(7762): 509-513. 10.1038/s41586-019-1261-9
Esmaeili, V., K. Tamura, et al. (2021). “Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response.” Neuron 109(13): 2183-2201.e2189. https://doi.org/10.1016/j.neuron.2021.05.005
Fleming, W., S. Jewell, et al. (2021). “Inferring spikes from calcium imaging in dopamine neurons.” PLOS ONE 16(6): e0252345. 10.1371/journal.pone.0252345
Fratzl, A., A. M. Koltchev, et al. (2021). “Flexible inhibitory control of visually evoked defensive behavior by the ventral lateral geniculate nucleus.” Neuron 109(23): 3810-3822.e3819. https://doi.org/10.1016/j.neuron.2021.09.003
Gray Shawn, R., L. Ye, et al. “Noradrenergic terminal short-term potentiation enables modality-selective integration of sensory input and vigilance state.” Science Advances 7(51): eabk1378. 10.1126/sciadv.abk1378
Kafashan, M., A. Jaffe, et al. (2020). “Scaling of information in large neural populations reveals signatures of information-limiting correlations.” bioRxiv: 2020.2001.2010.902171. 10.1101/2020.01.10.902171
Keller, A. J., M. Dipoppa, et al. (2020). “A Disinhibitory Circuit for Contextual Modulation in Primary Visual Cortex.” Neuron 108(6): 1181-1193.e1188. https://doi.org/10.1016/j.neuron.2020.11.013
Kline, A. M., D. A. Aponte, et al. (2021). “Inhibitory gating of coincidence-dependent sensory binding in secondary auditory cortex.” Nature Communications 12(1): 4610. 10.1038/s41467-021-24758-6
Lee, J. S., J. J. Briguglio, et al. (2020). “The Statistical Structure of the Hippocampal Code for Space as a Function of Time, Context, and Value.” Cell 183(3): 620-635.e622. https://doi.org/10.1016/j.cell.2020.09.024
Lu, J., A. H. Behbahani, et al. (2022). “Transforming representations of movement from body- to world-centric space.” Nature 601(7891): 98-104. 10.1038/s41586-021-04191-x
Lyall, E. H., D. P. Mossing, et al. (2021). “Synthesis of a comprehensive population code for contextual features in the awake sensory cortex.” eLife 10: e62687. 10.7554/eLife.62687
Massengill, C. I., L. Bayless-Edwards, et al. (2021). “Highly sensitive genetically-encoded sensors for population and subcellular imaging of cAMP in vivo</em>.” bioRxiv: 2021.2008.2027.457999. 10.1101/2021.08.27.457999
Melander, J. B., A. Nayebi, et al. (2021). “Distinct in vivo dynamics of excitatory synapses onto cortical pyramidal neurons and parvalbumin-positive interneurons.” Cell Reports 37(6): 109972. https://doi.org/10.1016/j.celrep.2021.109972
Men, Y., L. Ye, et al. (2020). “Astroglial FMRP deficiency cell-autonomously up-regulates miR-128 and disrupts developmental astroglial mGluR5 signaling.” Proceedings of the National Academy of Sciences 117(40): 25092. 10.1073/pnas.2014080117
Mittal, A. M., D. Gupta, et al. (2020). “Multiple network properties overcome random connectivity to enable stereotypic sensory responses.” Nature Communications 11(1): 1023. 10.1038/s41467-020-14836-6
Orsolic, I., M. Rio, et al. (2021). “Mesoscale cortical dynamics reflect the interaction of sensory evidence and temporal expectation during perceptual decision-making.” Neuron 109(11): 1861-1875.e1810. https://doi.org/10.1016/j.neuron.2021.03.031
Pacheco, D. A., S. Y. Thiberge, et al. (2021). “Auditory activity is diverse and widespread throughout the central brain of Drosophila.” Nature Neuroscience 24(1): 93-104. 10.1038/s41593-020-00743-y
Perez-Alvarez, A., B. C. Fearey, et al. (2020). “Freeze-frame imaging of synaptic activity using SynTagMA.” Nature Communications 11(1): 2464. 10.1038/s41467-020-16315-4
Pisano, F., M. Pisanello, et al. (2018). “Multipoint and large volume fiber photometry with a single tapered optical fiber implant.” bioRxiv: 455766. 10.1101/455766
Porges, E., D. Jenner, et al. (2021). “Antibiotic-Loaded Polymersomes for Clearance of Intracellular Burkholderia thailandensis.” ACS Nano 15(12): 19284-19297. 10.1021/acsnano.1c05309
Puścian, A., H. Benisty, et al. (2020). “NMDAR-Dependent Emergence of Behavioral Representation in Primary Visual Cortex.” Cell Reports 32(4): 107970. https://doi.org/10.1016/j.celrep.2020.107970
Scholl, B., D. E. Wilson, et al. (2019). “Functional Logic of Layer 2/3 Inhibitory Connectivity in the Ferret Visual Cortex.” Neuron 104(3): 451-457.e453. https://doi.org/10.1016/j.neuron.2019.08.004
Schulze, L., J. Henninger, et al. (2018). “Transparent Danionella translucida as a genetically tractable vertebrate brain model.” Nature Methods 15(11): 977-983. 10.1038/s41592-018-0144-6
Schumacher, J. W., M. McCann, et al. (2021). “Selective enhancement of neural coding in V1 underlies fine discrimination learning in tree shrew.” bioRxiv: 2021.2001.2010.426145. 10.1101/2021.01.10.426145
Sedigh-Sarvestani, M., K.-S. Lee, et al. (2021). “A sinusoidal transform of the visual field in cortical area V2.” bioRxiv: 2020.2012.2008.416651. 10.1101/2020.12.08.416651
Severson, K. S., D. Xu, et al. (2017). “Active Touch and Self-Motion Encoding by Merkel Cell-Associated Afferents.” Neuron 94(3): 666-676.e669. https://doi.org/10.1016/j.neuron.2017.03.045
Shakhi, P. K., M. M. Bijeesh, et al. (2021). “An in-house constructed dual channel confocal fluorescence microscope for biomolecular imaging.” OSA Continuum 4(8): 2177-2192. 10.1364/osac.428601
Stringer, C., M. Michaelos, et al. (2021). “High-precision coding in visual cortex.” Cell 184(10): 2767-2778.e2715. https://doi.org/10.1016/j.cell.2021.03.042
Sumser, A., M. Joesch, et al. (2021). “An extended toolkit for production and use of RVdG-CVS-N2c rabies viral vectors uncovers hidden hippocampal connections.” bioRxiv: 2021.2012.2023.474014. 10.1101/2021.12.23.474014
Tang, L. and M. J. Higley (2020). “Layer 5 Circuits in V1 Differentially Control Visuomotor Behavior.” Neuron 105(2): 346-354.e345. https://doi.org/10.1016/j.neuron.2019.10.014
Turner, N. L., T. Macrina, et al. (2020). “Multiscale and multimodal reconstruction of cortical structure and function.” bioRxiv: 2020.2010.2014.338681. 10.1101/2020.10.14.338681
Unger, E. K., J. P. Keller, et al. (2020). “Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning.” Cell 183(7): 1986-2002.e1926. https://doi.org/10.1016/j.cell.2020.11.040
Vavladeli, A., T. Daigle, et al. (2020). “Projection-specific Activity of Layer 2/3 Neurons Imaged in Mouse Primary Somatosensory Barrel Cortex During a Whisker Detection Task.” Function 1(1): zqaa008. 10.1093/function/zqaa008
Yang, W., M. Chini, et al. (2021). “Anesthetics fragment hippocampal network activity, alter spine dynamics, and affect memory consolidation.” PLOS Biology 19(4): e3001146. 10.1371/journal.pbio.3001146
Yildirim, M., M. Hu, et al. (2019). “Label-free characterization of visual cortical areas in awake mice via three-photon microscopy reveals correlations between functional maps and structural substrates.” bioRxiv: 790436. 10.1101/790436
Zhang, J.-F., B. Liu, et al. (2021). “An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice.” Nature Chemical Biology 17(1): 39-46. 10.1038/s41589-020-00660-y
Zhang, K., J. Hu, et al. (2021). “Deep compressed imaging via optimized pattern scanning.” Photonics Research 9(3): B57-B70. 10.1364/prj.410556
Zhao, Z., J. L. Zung, et al. (2020). “Chemical signatures of human odour generate a unique neural code in the brain of Aedes aegypti mosquitoes.” bioRxiv: 2020.2011.2001.363861. 10.1101/2020.11.01.363861
Adam, E. M., T. Johns, et al. (2021). “Dynamic control of visually-guided locomotion through cortico-subthalamic projections.” bioRxiv: 2020.2002.2005.936443. 10.1101/2020.02.05.936443
Allen, C. H., D. Ahmed, et al. (2021). “Label-free two-photon imaging of mitochondrial activity in murine macrophages stimulated with bacterial and viral ligands.” Scientific Reports 11(1): 14081. 10.1038/s41598-021-93043-9
Aponte, D. A., G. Handy, et al. (2021). “Recurrent network dynamics shape direction selectivity in primary auditory cortex.” Nature Communications 12(1): 314. 10.1038/s41467-020-20590-6
Arttamangkul, S., E. J. Platt, et al. (2021). “Functional independence of endogenous μ- and δ-opioid receptors co-expressed in cholinergic interneurons.” eLife 10: e69740. 10.7554/eLife.69740
Arttamangkul, S., A. Plazek, et al. (2019). “Visualizing endogenous opioid receptors in living neurons using ligand-directed chemistry.” eLife 8: e49319. 10.7554/eLife.49319
Chen, D., M. Ren, et al. (2020). “Design of a multi-modality DMD-based two-photon microscope system.” Optics Express 28(20): 30187-30198. 10.1364/oe.404652
Efimova, V. S., L. V. Isaeva, et al. (2019). “Analysis of In Vivo Activity of the Bovine Cholesterol Hydroxylase/Lyase System Proteins Expressed in Escherichia coli.” Molecular Biotechnology 61(4): 261-273. 10.1007/s12033-019-00158-6
Egger, R., Y. Tupikov, et al. (2020). “Local Axonal Conduction Shapes the Spatiotemporal Properties of Neural Sequences.” Cell 183(2): 537-548.e512. https://doi.org/10.1016/j.cell.2020.09.019
Haidey, J. N., G. Peringod, et al. (2021). “Astrocytes regulate ultra-slow arteriole oscillations via stretch-mediated TRPV4-COX-1 feedback.” Cell Reports 36(5): 109405. https://doi.org/10.1016/j.celrep.2021.109405
Herdzik, K. P., K. N. Bourdakos, et al. (2020). “Multimodal spectral focusing CARS and SFG microscopy with a tailored coherent continuum from a microstructured fiber.” Applied Physics B 126(5): 84. 10.1007/s00340-020-7406-6
Hige, T., Y. Aso, et al. (2015). “Heterosynaptic Plasticity Underlies Aversive Olfactory Learning in Drosophila.” Neuron 88(5): 985-998. https://doi.org/10.1016/j.neuron.2015.11.003
James, B., P. Piekarz, et al. (2021). “Multivesicular Release Increases the Efficiency of Information Transmission at Sensory Synapses.” bioRxiv: 2021.2011.2004.467256. 10.1101/2021.11.04.467256
Ji, X., S. Saha, et al. (2017). “The Sodium Channel β4 Auxiliary Subunit Selectively Controls Long-Term Depression in Core Nucleus Accumbens Medium Spiny Neurons.” Frontiers in Cellular Neuroscience 11. 10.3389/fncel.2017.00017
Kazemipour, A., O. Novak, et al. (2019). “Kilohertz frame-rate two-photon tomography.” Nature Methods 16(8): 778-786. 10.1038/s41592-019-0493-9
Keller, A. J., M. M. Roth, et al. (2020). “Feedback generates a second receptive field in neurons of the visual cortex.” Nature 582(7813): 545-549. 10.1038/s41586-020-2319-4
Kim, B., H. Le, et al. (2020). “High-speed combined reflectance confocal and moxifloxacin based two-photon microscopy.” Biomedical Optics Express 11(3): 1555-1567. 10.1364/boe.385763
Kim, H., J. Homann, et al. (2019). “A Long Timescale Stimulus History Effect in the Primary Visual Cortex.” bioRxiv: 585539. 10.1101/585539
Kim, S. S., A. M. Hermundstad, et al. (2019). “Generation of stable heading representations in diverse visual scenes.” Nature 576(7785): 126-131. 10.1038/s41586-019-1767-1
Koekkoek, L. L., M. Slomp, et al. (2021). “Disruption of lateral hypothalamic calorie detection by a free choice high fat diet.” The FASEB Journal 35(9): e21804. https://doi.org/10.1096/fj.202100762R
Latifi, S., S. Mitchell, et al. (2020). “Neuronal Network Topology Indicates Distinct Recovery Processes after Stroke.” Cerebral Cortex 30(12): 6363-6375. 10.1093/cercor/bhaa191
Liu, R., N. Ball, et al. (2019). “Aberration-free multi-plane imaging of neural activity from the mammalian brain using a fast-switching liquid crystal spatial light modulator.” Biomedical Optics Express 10(10): 5059-5080. 10.1364/boe.10.005059
Liu, Y., G. Foustoukos, et al. (2022). “Axonal and Dendritic Morphology of Excitatory Neurons in Layer 2/3 Mouse Barrel Cortex Imaged Through Whole-Brain Two-Photon Tomography and Registered to a Digital Brain Atlas.” Frontiers in neuroanatomy 15: 791015-791015. 10.3389/fnana.2021.791015
Liu, Y., Y. Xin, et al. (2021). “A cortical circuit mechanism for structural knowledge-based flexible sensorimotor decision-making.” Neuron 109(12): 2009-2024.e2006. https://doi.org/10.1016/j.neuron.2021.04.014
Mahn, M., I. Saraf-Sinik, et al. (2021). “Optogenetic silencing of neurotransmitter release with a naturally occurring invertebrate rhodopsin.” bioRxiv: 2021.2002.2018.431673. 10.1101/2021.02.18.431673
Moura, C. C., K. N. Bourdakos, et al. (2019). “Live-imaging of Bioengineered Cartilage Tissue using Multimodal Non-linear Molecular Imaging.” Scientific Reports 9(1): 5561. 10.1038/s41598-019-41466-w
Oda, K., J. Vierock, et al. (2018). “Crystal structure of the red light-activated channelrhodopsin Chrimson.” Nature Communications 9(1): 3949. 10.1038/s41467-018-06421-9
Perez-Alvarez, A., F. Huhn, et al. (2021). “Freeze-Frame Imaging of Dendritic Calcium Signals With TubuTag.” Frontiers in Molecular Neuroscience 14. 10.3389/fnmol.2021.635820
Peron, S., R. Pancholi, et al. (2020). “Recurrent interactions in local cortical circuits.” Nature 579(7798): 256-259. 10.1038/s41586-020-2062-x
Radvansky, B. A., J. Y. Oh, et al. (2021). “Behavior determines the hippocampal spatial mapping of a multisensory environment.” Cell Reports 36(5): 109444. https://doi.org/10.1016/j.celrep.2021.109444
Rikhye, R. V., M. Yildirim, et al. (2021). “Reliable Sensory Processing in Mouse Visual Cortex through Cooperative Interactions between Somatostatin and Parvalbumin Interneurons.” The Journal of Neuroscience 41(42): 8761. 10.1523/jneurosci.3176-20.2021
Runyan, C. A., E. Piasini, et al. (2017). “Distinct timescales of population coding across cortex.” Nature 548(7665): 92-96. 10.1038/nature23020
Shuster, S. A., M. J. Wagner, et al. (2021). “The relationship between birth timing, circuit wiring, and physiological response properties of cerebellar granule cells.” Proceedings of the National Academy of Sciences 118(23): e2101826118. 10.1073/pnas.2101826118
Smith, G. B. and D. Fitzpatrick (2016). Viral Injection and Cranial Window Implantation for In Vivo Two-Photon Imaging. High-Resolution Imaging of Cellular Proteins: Methods and Protocols. S. D. Schwartzbach, O. Skalli and T. Schikorski. New York, NY, Springer New York: 171-185. 10.1007/978-1-4939-6352-2_10
Sridharan, S., M. A. Gajowa, et al. (2022). “High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks.” Neuron. https://doi.org/10.1016/j.neuron.2022.01.008
Streich, L., J. C. Boffi, et al. (2021). “High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy.” Nature Methods 18(10): 1253-1258. 10.1038/s41592-021-01257-6
Takahashi, T., K. P. Herdzik, et al. (2021). “Selective Imaging of Microplastic and Organic Particles in Flow by Multimodal Coherent Anti-Stokes Raman Scattering and Two-Photon Excited Autofluorescence Analysis.” Analytical Chemistry 93(12): 5234-5240. 10.1021/acs.analchem.0c05474
Tang, A. D., W. Bennett, et al. (2021). “Subthreshold repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex.” Brain Stimulation 14(6): 1498-1507. https://doi.org/10.1016/j.brs.2021.10.001
Tyson, A. L., M. Vélez-Fort, et al. (2022). “Accurate determination of marker location within whole-brain microscopy images.” Scientific Reports 12(1): 867. 10.1038/s41598-021-04676-9
Valente, M., G. Pica, et al. (2021). “Correlations enhance the behavioral readout of neural population activity in association cortex.” Nature Neuroscience 24(7): 975-986. 10.1038/s41593-021-00845-1
Wang, F., K. Wang, et al. (2020). “Circuit and Behavioral Mechanisms of Sexual Rejection by Drosophila Females.” Current Biology 30(19): 3749-3760.e3743. https://doi.org/10.1016/j.cub.2020.07.083
Wang, K., F. Wang, et al. (2021). “Neural circuit mechanisms of sexual receptivity in Drosophila females.” Nature 589(7843): 577-581. 10.1038/s41586-020-2972-7
Xiong, W.-H., M. Qin, et al. (2021). “Myristoylation alone is sufficient for PKA catalytic subunits to associate with the plasma membrane to regulate neuronal functions.” Proceedings of the National Academy of Sciences 118(15): e2021658118. 10.1073/pnas.2021658118
Yatsenko, D., T. Nguyen, et al. (2021). “DataJoint Elements: Data Workflows for Neurophysiology.” bioRxiv: 2021.2003.2030.437358. 10.1101/2021.03.30.437358
Yildirim, M., H. Sugihara, et al. (2019). “Functional imaging of visual cortical layers and subplate in awake mice with optimized three-photon microscopy.” Nature Communications 10(1): 177. 10.1038/s41467-018-08179-6
Yuhao, Y., S. Niraj, et al. (2020). Monitoring uptake of palmitic acid by glioma cells using stimulated Raman scattering microscopy. Proc.SPIE. 10.1117/12.2546260
Zhang, D., E. Redington, et al. (2021). “Rational engineering of ratiometric calcium sensors with bright green and red fluorescent proteins.” Communications Biology 4(1): 924. 10.1038/s42003-021-02452-z
Zhou, A., S. A. Engelmann, et al. (2022). “Evaluation of resonant scanning as a high-speed imaging technique for two-photon imaging of cortical vasculature.” Biomedical Optics Express 13(3): 1374-1385. 10.1364/boe.448473
Zhu, Y. and F. Gabbiani (2018). Combined Two-Photon Calcium Imaging and Single-Ommatidium Visual Stimulation to Study Fine-Scale Retinotopy in Insects. Extracellular Recording Approaches. R. V. Sillitoe. New York, NY, Springer New York: 185-206. 10.1007/978-1-4939-7549-5_10
Kim, S., M. L. Wallace, et al. (2022). “Co-packaging of opposing neurotransmitters in individual synaptic vesicles in the central nervous system.” Neuron. https://doi.org/10.1016/j.neuron.2022.01.007
Lei, Z., K. Henderson, et al. (2022). “A neural circuit linking learning and sleep in Drosophila long-term memory.” Nature Communications 13(1): 609. https://doi.org/10.1038/s41467-022-28256-1
Deschamps, J. and J. Ries (2020). “EMU: reconfigurable graphical user interfaces for Micro-Manager.” BMC Bioinformatics 21(1): 456. 10.1186/s12859-020-03727-8
Fast, A., A. Lal, et al. (2020). “FLAME: Macroscopic imaging with microscopic resolution. Optical biopsy of human skin.” bioRxiv: 2020.2001.2031.927590. 10.1101/2020.01.31.927590
Gaffield, M. A., S. B. Amat, et al. (2015). “Chronic imaging of movement-related Purkinje cell calcium activity in awake behaving mice.” Journal of Neurophysiology 115(1): 413-422. 10.1152/jn.00834.2015
Gaffield, M. A. and J. M. Christie (2017). “Movement Rate Is Encoded and Influenced by Widespread, Coherent Activity of Cerebellar Molecular Layer Interneurons.” The Journal of Neuroscience 37(18): 4751. 10.1523/jneurosci.0534-17.2017
Gill, J. V., G. M. Lerman, et al. (2020). “Precise Holographic Manipulation of Olfactory Circuits Reveals Coding Features Determining Perceptual Detection.” Neuron 108(2): 382-393.e385. https://doi.org/10.1016/j.neuron.2020.07.034
Giovannucci, A., A. Badura, et al. (2017). “Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning.” Nature Neuroscience 20(5): 727-734. 10.1038/nn.4531
Graves, A. R., R. H. Roth, et al. (2021). “Visualizing synaptic plasticity in vivo by large-scale imaging of endogenous AMPA receptors.” eLife 10: e66809. 10.7554/eLife.66809
Griffiths, V. A., A. M. Valera, et al. (2020). “Real-time 3D movement correction for two-photon imaging in behaving animals.” Nature Methods 17(7): 741-748. 10.1038/s41592-020-0851-7
Henschke, J. U., E. Dylda, et al. (2020). “Reward Association Enhances Stimulus-Specific Representations in Primary Visual Cortex.” Current Biology 30(10): 1866-1880.e1865. https://doi.org/10.1016/j.cub.2020.03.018
Jayant, K., J. J. Hirtz, et al. (2017). “Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes.” Nature Nanotechnology 12(4): 335-342. 10.1038/nnano.2016.268
Ji, X., S. Saha, et al. (2017). “Dopamine Receptors Differentially Control Binge Alcohol Drinking-Mediated Synaptic Plasticity of the Core Nucleus Accumbens Direct and Indirect Pathways.” The Journal of Neuroscience 37(22): 5463. 10.1523/jneurosci.3845-16.2017
Kim Sung, S., H. Rouault, et al. (2017). “Ring attractor dynamics in the Drosophila central brain.” Science 356(6340): 849-853. 10.1126/science.aal4835
Klioutchnikov, A., D. J. Wallace, et al. (2020). “Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats.” Nature Methods 17(5): 509-513. 10.1038/s41592-020-0817-9
Li, B., C. Wu, et al. (2020). “An adaptive excitation source for high-speed multiphoton microscopy.” Nature Methods 17(2): 163-166. 10.1038/s41592-019-0663-9
Liu, H., Y. Du, et al. (2017). “Sealing of Immersion Deuterium Dioxide and Its Application to Signal Maintenance for Ex-Vivo and In-Vivo Multiphoton Microscopy Excited at the 1700-nm Window.” IEEE Photonics Journal 9(5): 1-8. 10.1109/jphot.2017.2737012
Liu, H., J. Wang, et al. (2018). “Ex and in vivo characterization of the wavelength-dependent 3-photon action cross-sections of red fluorescent proteins covering the 1700-nm window.” Journal of Biophotonics 11(7): e201700351. https://doi.org/10.1002/jbio.201700351
Liu, R., N. Ball, et al. (2018). “Multi-plane Imaging of Neural Activity From the Mammalian Brain Using a Fast-switching Liquid Crystal Spatial Light Modulator.” bioRxiv: 506618. 10.1101/506618
Liu, R., Z. Li, et al. (2019). “Direct wavefront sensing enables functional imaging of infragranular axons and spines.” Nature Methods 16(7): 615-618. 10.1038/s41592-019-0434-7
Ma, Z., H. Liu, et al. (2020). “Stability of motor cortex network states during learning-associated neural reorganizations.” Journal of Neurophysiology 124(5): 1327-1342. 10.1152/jn.00061.2020
Marvin, J. S., B. Scholl, et al. (2018). “Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR.” Nature Methods 15(11): 936-939. 10.1038/s41592-018-0171-3
Mitani, A. and T. Komiyama (2018). “Real-Time Processing of Two-Photon Calcium Imaging Data Including Lateral Motion Artifact Correction.” Frontiers in Neuroinformatics 12. 10.3389/fninf.2018.00098
Moran, A. K., T. P. Eiting, et al. (2021). “Dynamics of Glutamatergic Drive Underlie Diverse Responses of Olfactory Bulb Outputs In Vivo.” eNeuro 8(2): ENEURO.0110-0121.2021. 10.1523/eneuro.0110-21.2021
Pafundo, D. E., M. A. Nicholas, et al. (2016). “Top-Down-Mediated Facilitation in the Visual Cortex Is Gated by Subcortical Neuromodulation.” The Journal of Neuroscience 36(10): 2904. 10.1523/jneurosci.2909-15.2016
Pisanello, M., F. Pisano, et al. (2019). “The Three-Dimensional Signal Collection Field for Fiber Photometry in Brain Tissue.” Frontiers in Neuroscience 13. 10.3389/fnins.2019.00082
Pologruto, T. A., B. L. Sabatini, et al. (2003). “ScanImage: Flexible software for operating laser scanning microscopes.” BioMedical Engineering OnLine 2(1): 13. 10.1186/1475-925x-2-13
Pottackal, J., J. H. Singer, et al. (2021). “Computational and Molecular Properties of Starburst Amacrine Cell Synapses Differ With Postsynaptic Cell Type.” Frontiers in Cellular Neuroscience 15. 10.3389/fncel.2021.660773
Reimer, J., M. J. McGinley, et al. (2016). “Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex.” Nature Communications 7(1): 13289. 10.1038/ncomms13289
Song, A., A. S. Charles, et al. (2017). “Volumetric two-photon imaging of neurons using stereoscopy (vTwINS).” Nature Methods 14(4): 420-426. 10.1038/nmeth.4226
Takasaki, K. T., D. Tsyboulski, et al. (2019). “Dual-plane 3-photon microscopy with remote focusing.” Biomedical Optics Express 10(11): 5585-5599. 10.1364/boe.10.005585
Thomas, C. I., M. A. Ryan, et al. (2021). “Targeting Functionally Characterized Synaptic Architecture Using Inherent Fiducials and 3D Correlative Microscopy.” Microscopy and Microanalysis 27(1): 156-169. Doi: 10.1017/s1431927620024757
Valle, A. F. and J. D. Seelig (2019). “Two-photon Bessel beam tomography for fast volume imaging.” Optics Express 27(9): 12147-12162. 10.1364/oe.27.012147
Wagner, M. J., J. Savall, et al. (2021). “A neural circuit state change underlying skilled movements.” Cell 184(14): 3731-3747.e3721. https://doi.org/10.1016/j.cell.2021.06.001
Wang, K., Y. Pan, et al. (2021). “Deep-skin multiphoton microscopy of lymphatic vessels excited at the 1700-nm window in vivo.” Biomedical Optics Express 12(10): 6474-6484. 10.1364/boe.437482
Wang, K., W. Wen, et al. (2017). “Order-of-magnitude multiphoton signal enhancement based on characterization of absorption spectra of immersion oils at the 1700-nm window.” Optics Express 25(6): 5909-5916. 10.1364/oe.25.005909
Yildirim, M., M. Hu, et al. (2020). “Quantitative third-harmonic generation imaging of mouse visual cortex areas reveals correlations between functional maps and structural substrates.” Biomedical Optics Express 11(10): 5650-5673. 10.1364/boe.396962
Yu, C.-H., J. N. Stirman, et al. (2021). “Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry.” Nature Communications 12(1): 6639. 10.1038/s41467-021-26736-4
Dhanya, S. K. and G. Hasan (2022). “Two photon imaging of calcium responses in murine Purkinje neurons.” STAR Protocols 3(1): 101105. https://doi.org/10.1016/j.xpro.2021.101105
Tyson, A. L., M. Vélez-Fort, et al. (2022). “Accurate determination of marker location within whole-brain microscopy images.” Scientific Reports 12(1): 867. https://doi.org/10.1038/s41598-021-04676-9
Hartveit, E., M. L. Veruki, et al. (2022). “Dendritic morphology of an inhibitory retinal interneuron enables simultaneous local and global synaptic integration.” The Journal of Neuroscience: JN-RM-0695-0621. https://doi.org/10.1523/JNEUROSCI.0695-21.2021
Sun, B., M. Wang, et al. (2022). “Intravital Imaging of the Murine Subventricular Zone with Three Photon Microscopy.” Cerebral Cortex: bhab400. https://doi.org/10.1093/cercor/bhab400
Pulin, M., K. E. Stockhausen, et al. (2022). “Orthogonally-polarized excitation for improved two-photon and second-harmonic-generation microscopy, applied to neurotransmitter imaging with GPCR-based sensors.” Biomedical Optics Express 13(2): 777-790. https://doi.org/10.1364/BOE.448760
Tiriac, A., K. Bistrong, et al. (2022). “The influence of spontaneous and visual activity on the development of direction selectivity maps in mouse retina.” Cell Reports 38(2): 110225. https://doi.org/10.1016/j.celrep.2021.110225
Ueda, H. H., Y. Nagasawa, et al. (2022). “Chronic neuronal excitation leads to dual metaplasticity in the signaling for structural long-term potentiation.” Cell Reports 38(1): 110153. https://doi.org/10.1016/j.celrep.2021.110153
Tsukahara, T., D. H. Brann, et al. (2021). “A transcriptional rheostat couples past activity to future sensory responses.” Cell. https://doi.org/10.1016/j.cell.2021.11.022
Heuke, S., I. Rimke, et al. (2021). “Shot-noise limited tunable dual-vibrational frequency stimulated Raman scattering microscopy.” Biomedical Optics Express 12(12): 7780-7789. https://doi.org/10.1364/BOE.446348
Zhuang, J., Y. Wang, et al. (2021). “Laminar distribution and arbor density of two functional classes of thalamic inputs to primary visual cortex.” Cell Reports 37(2): 109826. https://doi.org/10.1016/j.celrep.2021.109826
Fratzl, A., A. M. Koltchev, et al. (2021). “Flexible inhibitory control of visually evoked defensive behavior by the ventral lateral geniculate nucleus.” Neuron. https://doi.org/10.1016/j.neuron.2021.09.003
Abdolghader, P., A. Ridsdale, et al. (2021). “Unsupervised hyperspectral stimulated Raman microscopy image enhancement: denoising and segmentation via one-shot deep learning.” Optics Express 29(21): 34205-34219. https://doi.org/10.1364/OE.439662
Goltstein, P. M., S. Reinert, et al. (2021). “Mouse visual cortex areas represent perceptual and semantic features of learned visual categories.” Nature Neuroscience 24(10): 1441-1451. https://doi.org/10.1038/s41593-021-00914-5
Wang, K., Y. Pan, et al. (2021). “Deep-skin multiphoton microscopy of lymphatic vessels excited at the 1700-nm window in vivo.” Biomedical Optics Express 12(10): 6474-6484. https://doi.org/10.1364/BOE.437482
Agrawal, S., Dickinson, E. S., Sustar, A., Gurung, P., Shepherd, D., Truman, J. W., & Tuthill, J. C. (2020). Central processing of leg proprioception in Drosophila. eLife, 9, e60299. doi: 10.7554/eLife.60299. https://doi.org/10.7554/eLife.60299
Allen, C. H., Ahmed, D., Raiche-Tanner, O., Chauhan, V., Mostaço-Guidolin, L., Cassol, E., & Murugkar, S. (2021). Label-free two-photon imaging of mitochondrial activity in murine macrophages stimulated with bacterial and viral ligands. Scientific Reports, 11(1), 14081. doi: 10.1038/s41598-021-93043-9. https://doi.org/10.1038/s41598-021-93043-9
Allen, C. H., Benjamin, H., Olivia, R.-T., & Sangeeta, M. (2021). Compact silicon photomultiplier detection of multimodal multiphoton microscopy signals. Paper presented at the Proc.SPIE.
Allen, C. H., Hansson, B., Raiche-Tanner, O., & Murugkar, S. (2020). Coherent anti-Stokes Raman scattering imaging using silicon photomultipliers. Optics Letters, 45(8), 2299-2302. doi: 10.1364/ol.390050. http://ol.osa.org/abstract.cfm?URI=ol-45-8-2299
Arttamangkul, S., Plazek, A., Platt, E. J., Jin, H., Murray, T. F., Birdsong, W. T., . . . Williams, J. T. (2019). Visualizing endogenous opioid receptors in living neurons using ligand-directed chemistry. eLife, 8, e49319. doi: 10.7554/eLife.49319. https://doi.org/10.7554/eLife.49319
Aso, Y., Ray, R. P., Long, X., Bushey, D., Cichewicz, K., Ngo, T.-T. B., . . . Rubin, G. M. (2019). Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify memory dynamics. eLife, 8, e49257. doi: 10.7554/eLife.49257. https://doi.org/10.7554/eLife.49257
Bale, M. R., Bitzidou, M., Giusto, E., Kinghorn, P., & Maravall, M. (2021). Sequence Learning Induces Selectivity to Multiple Task Parameters in Mouse Somatosensory Cortex. Current Biology, 31(3), 473-485.e475. doi: https://doi.org/10.1016/j.cub.2020.10.059. https://www.sciencedirect.com/science/article/pii/S096098222031602X
Benbenishty, A., Gadrich, M., Cottarelli, A., Lubart, A., Kain, D., Amer, M., . . . Blinder, P. (2019). Prophylactic TLR9 stimulation reduces brain metastasis through microglia activation. PLOS Biology, 17(3), e2006859. doi: 10.1371/journal.pbio.2006859. https://doi.org/10.1371/journal.pbio.2006859
Bjørnstad, D. M., Åbjørsbråten, K. S., Hennestad, E., Cunen, C., Hermansen, G. H., Bojarskaite, L., . . . Enger, R. (2021). Begonia—A Two-Photon Imaging Analysis Pipeline for Astrocytic Ca2+ Signals. [Original Research]. Frontiers in cellular neuroscience, 15(176). doi: 10.3389/fncel.2021.681066. https://www.frontiersin.org/article/10.3389/fncel.2021.681066
Blot, A., Roth, M. M., Gasler, I., Javadzadeh, M., Imhof, F., & Hofer, S. B. (2021). Visual intracortical and transthalamic pathways carry distinct information to cortical areas. Neuron, 109(12), 1996-2008.e1996. doi: https://doi.org/10.1016/j.neuron.2021.04.017. https://www.sciencedirect.com/science/article/pii/S089662732100283X
Chakraborty, T., Chen, B., Daetwyler, S., Chang, B.-J., Vanderpoorten, O., Sapoznik, E., . . . Fiolka, R. (2020). Converting lateral scanning into axial focusing to speed up three-dimensional microscopy. Light: Science & Applications, 9(1), 165. doi: 10.1038/s41377-020-00401-9. https://doi.org/10.1038/s41377-020-00401-9
Chang, J. T., Whitney, D., & Fitzpatrick, D. (2020). Experience-Dependent Reorganization Drives Development of a Binocularly Unified Cortical Representation of Orientation. Neuron, 107(2), 338-350.e335. doi: https://doi.org/10.1016/j.neuron.2020.04.022. https://www.sciencedirect.com/science/article/pii/S0896627320303147
Chen, B., Chakraborty, T., Daetwyler, S., Manton, J. D., Dean, K., & Fiolka, R. (2020). Extended depth of focus multiphoton microscopy via incoherent pulse splitting. Biomedical Optics Express, 11(7), 3830-3842. doi: 10.1364/boe.393931. http://www.osapublishing.org/boe/abstract.cfm?URI=boe-11-7-3830
Chen, D., Ren, M., Zhang, D., Chen, J., Gu, S., & Chen, S.-C. (2020). Design of a multi-modality DMD-based two-photon microscope system. Optics Express, 28(20), 30187-30198. doi: 10.1364/oe.404652. http://www.opticsexpress.org/abstract.cfm?URI=oe-28-20-30187
Chen, X., Cheng, H., Deng, X., Tong, S., Li, J., Qiu, P., & Wang, K. (2021). Self-phase-modulated femtosecond laser source at 1603 nm and its application to deep-brain 3-photon microscopy in vivo. [https://doi.org/10.1002/jbio.202000349]. Journal of Biophotonics, 14(3), e202000349. doi: https://doi.org/10.1002/jbio.202000349. https://doi.org/10.1002/jbio.202000349
Cheng, H., Tong, S., Deng, X., Liu, H., Du, Y., He, C., . . . Wang, K. (2019). Deep-brain 2-photon fluorescence microscopy in vivo excited at the1700 nm window. Optics Letters, 44(17), 4432-4435. doi: 10.1364/ol.44.004432. http://ol.osa.org/abstract.cfm?URI=ol-44-17-4432
Cheung, J., Maire, P., Kim, J., Sy, J., & Hires, S. A. (2019). The Sensorimotor Basis of Whisker-Guided Anteroposterior Object Localization in Head-Fixed Mice. Current Biology, 29(18), 3029-3040.e3024. doi: https://doi.org/10.1016/j.cub.2019.07.068. https://www.sciencedirect.com/science/article/pii/S0960982219309480
Choi, J., Goncharov, V., Kleinbart, J., Orsborn, A., & Pesaran, B. (2018, 18-21 July 2018). Monkey-MIMMS: Towards Automated Cellular Resolution Large- Scale Two-Photon Microscopy In The Awake Macaque Monkey. Paper presented at the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
Chong, E. Z., Panniello, M., Barreiros, I., Kohl, M. M., & Booth, M. J. (2019). Quasi-simultaneous multiplane calcium imaging of neuronal circuits. Biomedical Optics Express, 10(1), 267-282. doi: 10.1364/boe.10.000267. http://www.osapublishing.org/boe/abstract.cfm?URI=boe-10-1-267
Clemens, J., Ozeri-Engelhard, N., & Murthy, M. (2018). Fast intensity adaptation enhances the encoding of sound in Drosophila. Nature Communications, 9(1), 134. doi: 10.1038/s41467-017-02453-9. https://doi.org/10.1038/s41467-017-02453-9
Collot, M., Wilms, C. D., Bentkhayet, A., Marcaggi, P., Couchman, K., Charpak, S., . . . Mallet, J.-M. (2015). CaRuby-Nano: a novel high affinity calcium probe for dual color imaging. eLife, 4, e05808. doi: 10.7554/eLife.05808. https://doi.org/10.7554/eLife.05808
Costa Moura, C., Lanham, S. A., Monfort, T., Bourdakos, K. N., Tare, R. S., Oreffo, R. O. C., & Mahajan, S. (2018). Quantitative temporal interrogation in 3D of bioengineered human cartilage using multimodal label-free imaging. Integrative Biology, 10(10), 635-645. doi: 10.1039/c8ib00050f. https://doi.org/10.1039/c8ib00050f
Dag, U., Lei, Z., Le, J. Q., Wong, A., Bushey, D., & Keleman, K. (2019). Neuronal reactivation during post-learning sleep consolidates long-term memory in Drosophila. eLife, 8, e42786. doi: 10.7554/eLife.42786. https://doi.org/10.7554/eLife.42786
Dana, H., Sun, Y., Mohar, B., Hulse, B. K., Kerlin, A. M., Hasseman, J. P., . . . Kim, D. S. (2019). High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nature Methods, 16(7), 649-657. doi: 10.1038/s41592-019-0435-6. https://doi.org/10.1038/s41592-019-0435-6
de Boer, W. D. A. M., Hirtz, J. J., Capretti, A., Gregorkiewicz, T., Izquierdo-Serra, M., Han, S., . . . Yuste, R. (2018). Neuronal photoactivation through second-harmonic near-infrared absorption by gold nanoparticles. Light: Science & Applications, 7(1), 100. doi: 10.1038/s41377-018-0103-0. https://doi.org/10.1038/s41377-018-0103-0
de Malmazet, D., Kühn, N. K., & Farrow, K. (2018). Retinotopic Separation of Nasal and Temporal Motion Selectivity in the Mouse Superior Colliculus. Current Biology, 28(18), 2961-2969.e2964. doi: https://doi.org/10.1016/j.cub.2018.07.001. https://www.sciencedirect.com/science/article/pii/S096098221830900X
Deverett, B., Koay, S. A., Oostland, M., & Wang, S. S. H. (2018). Cerebellar involvement in an evidence-accumulation decision-making task. eLife, 7, e36781. doi: 10.7554/eLife.36781. https://doi.org/10.7554/eLife.36781
Diana, G., Sainsbury, T. T. J., & Meyer, M. P. (2019). Bayesian inference of neuronal assemblies. PLOS Computational Biology, 15(10), e1007481. doi: 10.1371/journal.pcbi.1007481. https://doi.org/10.1371/journal.pcbi.1007481
Donzis, E. J., Estrada-Sánchez, A. M., Indersmitten, T., Oikonomou, K., Tran, C. H., Wang, C., . . . Levine, M. S. (2020). Cortical Network Dynamics Is Altered in Mouse Models of Huntington’s Disease. Cerebral Cortex, 30(4), 2372-2388. doi: 10.1093/cercor/bhz245. https://doi.org/10.1093/cercor/bhz245
Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N., & Harvey, C. D. (2017). Dynamic Reorganization of Neuronal Activity Patterns in Parietal Cortex. Cell, 170(5), 986-999.e916. doi: https://doi.org/10.1016/j.cell.2017.07.021. https://www.sciencedirect.com/science/article/pii/S0092867417308280
Dürst, C. D., Wiegert, J. S., Helassa, N., Kerruth, S., Coates, C., Schulze, C., . . . Oertner, T. G. (2019). High-speed imaging of glutamate release with genetically encoded sensors. Nature Protocols, 14(5), 1401-1424. doi: 10.1038/s41596-019-0143-9. https://doi.org/10.1038/s41596-019-0143-9
El-Boustani, S., Sermet, B. S., Foustoukos, G., Oram, T. B., Yizhar, O., & Petersen, C. C. H. (2020). Anatomically and functionally distinct thalamocortical inputs to primary and secondary mouse whisker somatosensory cortices. Nature Communications, 11(1), 3342. doi: 10.1038/s41467-020-17087-7. https://doi.org/10.1038/s41467-020-17087-7
Engelhard, B., Finkelstein, J., Cox, J., Fleming, W., Jang, H. J., Ornelas, S., . . . Witten, I. B. (2019). Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature, 570(7762), 509-513. doi: 10.1038/s41586-019-1261-9. https://doi.org/10.1038/s41586-019-1261-9
Esmaeili, V., Tamura, K., Muscinelli, S. P., Modirshanechi, A., Boscaglia, M., Lee, A. B., . . . Petersen, C. C. H. (2021). Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response. Neuron, 109(13), 2183-2201.e2189. doi: https://doi.org/10.1016/j.neuron.2021.05.005. https://www.sciencedirect.com/science/article/pii/S0896627321003317
Euler, T., Franke, K., & Baden, T. (2019). Studying a Light Sensor with Light: Multiphoton Imaging in the Retina. In E. Hartveit (Ed.), Multiphoton Microscopy (pp. 225-250). New York, NY: Springer New York.
Fast, A., Lal, A., Durkin, A. F., Lentsch, G., Harris, R. M., Zachary, C. B., . . . Balu, M. (2020). Fast, large area multiphoton exoscope (FLAME) for macroscopic imaging with microscopic resolution of human skin. Scientific Reports, 10(1), 18093. doi: 10.1038/s41598-020-75172-9. https://doi.org/10.1038/s41598-020-75172-9
Fast, A., Lal, A., Durkin, A. F., Zachary, C. B., Ganesan, A. K., & Balu, M. (2020). FLAME: Macroscopic imaging with microscopic resolution. Optical biopsy of human skin. bioRxiv, 2020.2001.2031.927590. doi: 10.1101/2020.01.31.927590. http://biorxiv.org/content/early/2020/02/02/2020.01.31.927590.abstract
Feese, B. D., Pafundo, D. E., Schmehl, M. N., & Kuhlman, S. J. (2017). Binocular deprivation induces both age-dependent and age-independent forms of plasticity in parvalbumin inhibitory neuron visual response properties. Journal of Neurophysiology, 119(2), 738-751. doi: 10.1152/jn.00386.2017. https://doi.org/10.1152/jn.00386.2017
Fleming, W., Jewell, S., Engelhard, B., Witten, D. M., & Witten, I. B. (2021). Inferring spikes from calcium imaging in dopamine neurons. PLOS ONE, 16(6), e0252345. doi: 10.1371/journal.pone.0252345. https://doi.org/10.1371/journal.pone.0252345
Gaffield, M. A., Amat, S. B., Bito, H., & Christie, J. M. (2016). Chronic imaging of movement-related Purkinje cell calcium activity in awake behaving mice. Journal of Neurophysiology, 115(1), 413-422. doi: 10.1152/jn.00834.2015. https://journals.physiology.org/doi/abs/10.1152/jn.00834.2015
Gaffield, M. A., Bonnan, A., & Christie, J. M. (2019). Conversion of Graded Presynaptic Climbing Fiber Activity into Graded Postsynaptic Ca2+ Signals by Purkinje Cell Dendrites. Neuron, 102(4), 762-769.e764. doi: https://doi.org/10.1016/j.neuron.2019.03.010. https://www.sciencedirect.com/science/article/pii/S089662731930217X
Gaffield, M. A., & Christie, J. M. (2017). Movement Rate Is Encoded and Influenced by Widespread, Coherent Activity of Cerebellar Molecular Layer Interneurons. The Journal of Neuroscience, 37(18), 4751. doi: 10.1523/jneurosci.0534-17.2017. http://www.jneurosci.org/content/37/18/4751.abstract
Gaffield, M. A., Rowan, M. J. M., Amat, S. B., Hirai, H., & Christie, J. M. (2018). Inhibition gates supralinear Ca2+ signaling in Purkinje cell dendrites during practiced movements. eLife, 7, e36246. doi: 10.7554/eLife.36246. https://doi.org/10.7554/eLife.36246
Gala, R., Lebrecht, D., Sahlender, D. A., Jorstad, A., Knott, G., Holtmaat, A., & Stepanyants, A. (2017). Computer assisted detection of axonal bouton structural plasticity in in vivo time-lapse images. eLife, 6, e29315. doi: 10.7554/eLife.29315. https://doi.org/10.7554/eLife.29315
Gan, M., He, C., Liu, H., Zhuang, Z., Qiu, P., & Wang, K. (2019). Air-core fiber or photonic-crystal rod, which is more suitable for energetic femtosecond pulse generation and three-photon microscopy at the 1700-nm window? [https://doi.org/10.1002/jbio.201900069]. Journal of Biophotonics, 12(10), e201900069. doi: https://doi.org/10.1002/jbio.201900069. https://doi.org/10.1002/jbio.201900069
Gauthier, J. L., & Tank, D. W. (2018). A Dedicated Population for Reward Coding in the Hippocampus. Neuron, 99(1), 179-193.e177. doi: https://doi.org/10.1016/j.neuron.2018.06.008. https://www.sciencedirect.com/science/article/pii/S0896627318304768
Godenzini, L., Alwis, D., Guzulaitis, R., Honnuraiah, S., Stuart, G. J., & Palmer, L. M. (2021). Auditory input enhances somatosensory encoding and tactile goal-directed behavior. Nature Communications, 12(1), 4509. doi: 10.1038/s41467-021-24754-w. https://doi.org/10.1038/s41467-021-24754-w
Groschner, L. N., Chan Wah Hak, L., Bogacz, R., DasGupta, S., & Miesenböck, G. (2018). Dendritic Integration of Sensory Evidence in Perceptual Decision-Making. Cell, 173(4), 894-905.e813. doi: https://doi.org/10.1016/j.cell.2018.03.075. https://www.sciencedirect.com/science/article/pii/S0092867418304471
Gu, Y., Lewallen, S., Kinkhabwala, A. A., Domnisoru, C., Yoon, K., Gauthier, J. L., . . . Tank, D. W. (2018). A Map-like Micro-Organization of Grid Cells in the Medial Entorhinal Cortex. Cell, 175(3), 736-750.e730. doi: https://doi.org/10.1016/j.cell.2018.08.066. https://www.sciencedirect.com/science/article/pii/S009286741831167X
Hall, C. E., McNamara, J. O., & Yasuda, R. (2019). Analysis of TrkB Receptor Activity Using FRET Sensors. In C. B. Duarte & E. Tongiorgi (Eds.), Brain-Derived Neurotrophic Factor (BDNF) (pp. 149-157). New York, NY: Springer New York.
Hamodi, A. S., Martinez Sabino, A., Fitzgerald, N. D., Moschou, D., & Crair, M. C. (2020). Transverse sinus injections drive robust whole-brain expression of transgenes. eLife, 9, e53639. doi: 10.7554/eLife.53639. https://doi.org/10.7554/eLife.53639
Hamodi, A. S., Sabino, A. M., Fitzgerald, N. D., & Crair, M. C. (2019). Transverse sinus injections: A novel method for whole-brain vector-driven gene delivery. bioRxiv, 579730. doi: 10.1101/579730. http://biorxiv.org/content/early/2019/03/16/579730.abstract
Har-Gil, H., Golgher, L., Israel, S., Kain, D., Cheshnovsky, O., Parnas, M., & Blinder, P. (2018). PySight: plug and play photon counting for fast continuous volumetric intravital microscopy. Optica, 5(9), 1104-1112. doi: 10.1364/optica.5.001104. http://www.osapublishing.org/optica/abstract.cfm?URI=optica-5-9-1104
Hattori, R., Danskin, B., Babic, Z., Mlynaryk, N., & Komiyama, T. (2019). Area-Specificity and Plasticity of History-Dependent Value Coding During Learning. Cell, 177(7), 1858-1872.e1815. doi: https://doi.org/10.1016/j.cell.2019.04.027. https://www.sciencedirect.com/science/article/pii/S0092867419304465
He, C., Deng, X., Pan, Y., Tong, S., Kang, J., Li, J., . . . Wang, K. (2020). 3-photon microscopy of myelin in mouse digital skin excited at the 1700-nm window. [https://doi.org/10.1002/jbio.202000321]. Journal of Biophotonics, 13(12), e202000321. doi: https://doi.org/10.1002/jbio.202000321. https://doi.org/10.1002/jbio.202000321
He, C., Gan, M., Deng, X., Liu, H., Qiu, P., & Wang, K. (2019). 3-photon fluorescence imaging of sulforhodamine B-labeled elastic fibers in the mouse skin in vivo. [https://doi.org/10.1002/jbio.201900185]. Journal of Biophotonics, 12(11), e201900185. doi: https://doi.org/10.1002/jbio.201900185. https://doi.org/10.1002/jbio.201900185
He, J., Du, Y., Zhuang, Z., Wen, W., Liu, H., Wang, K., & Qiu, P. (2018). Wavelength Separation Tunable 2-Color Soliton Generation and Its Application to 2-Color Fluorescence Multiphoton Microscopy. Journal of Lightwave Technology, 36(16), 3249-3253. doi: 10.1109/jlt.2018.2833280.
Henschke, J. U., Dylda, E., Katsanevaki, D., Dupuy, N., Currie, S. P., Amvrosiadis, T., . . . Rochefort, N. L. (2020). Reward Association Enhances Stimulus-Specific Representations in Primary Visual Cortex. Current Biology, 30(10), 1866-1880.e1865. doi: https://doi.org/10.1016/j.cub.2020.03.018. https://www.sciencedirect.com/science/article/pii/S0960982220303560
Henschke, J. U., Price, A. T., & Pakan, J. M. P. (2021). Enhanced modulation of cell-type specific neuronal responses in mouse dorsal auditory field during locomotion. Cell Calcium, 96, 102390. doi: https://doi.org/10.1016/j.ceca.2021.102390. https://www.sciencedirect.com/science/article/pii/S0143416021000440
Herdzik, K. P., Bourdakos, K. N., Johnson, P. B., Lister, A. P., Pitera, A. P., Guo, C.-y., . . . Mahajan, S. (2020). Multimodal spectral focusing CARS and SFG microscopy with a tailored coherent continuum from a microstructured fiber. Applied Physics B, 126(5), 84. doi: 10.1007/s00340-020-7406-6. https://doi.org/10.1007/s00340-020-7406-6
Hige, T., Aso, Y., Modi, Mehrab N., Rubin, Gerald M., & Turner, Glenn C. (2015). Heterosynaptic Plasticity Underlies Aversive Olfactory Learning in Drosophila. Neuron, 88(5), 985-998. doi: https://doi.org/10.1016/j.neuron.2015.11.003. https://www.sciencedirect.com/science/article/pii/S0896627315009824
Inoue, M., Takeuchi, A., Manita, S., Horigane, S.-i., Sakamoto, M., Kawakami, R., . . . Bito, H. (2019). Rational Engineering of XCaMPs, a Multicolor GECI Suite for In Vivo Imaging of Complex Brain Circuit Dynamics. Cell, 177(5), 1346-1360.e1324. doi: https://doi.org/10.1016/j.cell.2019.04.007. https://www.sciencedirect.com/science/article/pii/S0092867419303939
Jackman, S. L., Chen, C. H., Chettih, S. N., Neufeld, S. Q., Drew, I. R., Agba, C. K., . . . Regehr, W. G. (2018). Silk Fibroin Films Facilitate Single-Step Targeted Expression of Optogenetic Proteins. Cell Reports, 22(12), 3351-3361. doi: https://doi.org/10.1016/j.celrep.2018.02.081. https://www.sciencedirect.com/science/article/pii/S2211124718302912
Jeanne, J. M., Fişek, M., & Wilson, R. I. (2018). The Organization of Projections from Olfactory Glomeruli onto Higher-Order Neurons. Neuron, 98(6), 1198-1213.e1196. doi: https://doi.org/10.1016/j.neuron.2018.05.011. https://www.sciencedirect.com/science/article/pii/S0896627318303830
Kafashan, M., Jaffe, A. W., Chettih, S. N., Nogueira, R., Arandia-Romero, I., Harvey, C. D., . . . Drugowitsch, J. (2021). Scaling of sensory information in large neural populations shows signatures of information-limiting correlations. Nature Communications, 12(1), 473. doi: 10.1038/s41467-020-20722-y. https://doi.org/10.1038/s41467-020-20722-y
Katlowitz, K. A., Picardo, M. A., & Long, M. A. (2018). Stable Sequential Activity Underlying the Maintenance of a Precisely Executed Skilled Behavior. Neuron, 98(6), 1133-1140.e1133. doi: https://doi.org/10.1016/j.neuron.2018.05.017. https://www.sciencedirect.com/science/article/pii/S089662731830415X
Kato, H. K., Asinof, S. K., & Isaacson, J. S. (2017). Network-Level Control of Frequency Tuning in Auditory Cortex. Neuron, 95(2), 412-423.e414. doi: https://doi.org/10.1016/j.neuron.2017.06.019. https://www.sciencedirect.com/science/article/pii/S0896627317305172
Kato, Hiroyuki K., Gillet, Shea N., & Isaacson, Jeffry S. (2015). Flexible Sensory Representations in Auditory Cortex Driven by Behavioral Relevance. Neuron, 88(5), 1027-1039. doi: https://doi.org/10.1016/j.neuron.2015.10.024. https://www.sciencedirect.com/science/article/pii/S0896627315009186
Kerlin, A., Mohar, B., Flickinger, D., MacLennan, B. J., Dean, M. B., Davis, C., . . . Svoboda, K. (2019). Functional clustering of dendritic activity during decision-making. eLife, 8, e46966. doi: 10.7554/eLife.46966. https://doi.org/10.7554/eLife.46966
Kim, H., Homann, J., Tank, D. W., & Berry, M. J. (2019). A Long Timescale Stimulus History Effect in the Primary Visual Cortex. bioRxiv, 585539. doi: 10.1101/585539. http://biorxiv.org/content/early/2019/03/21/585539.abstract
Kim, M.-H., Znamenskiy, P., Iacaruso, M. F., & Mrsic-Flogel, T. D. (2018). Segregated Subnetworks of Intracortical Projection Neurons in Primary Visual Cortex. Neuron, 100(6), 1313-1321.e1316. doi: https://doi.org/10.1016/j.neuron.2018.10.023. https://www.sciencedirect.com/science/article/pii/S0896627318309115
Kinkhabwala, A. A., Gu, Y., Aronov, D., & Tank, D. W. (2020). Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality. eLife, 9, e43140. doi: 10.7554/eLife.43140. https://doi.org/10.7554/eLife.43140
Klapoetke, N. C., Nern, A., Peek, M. Y., Rogers, E. M., Breads, P., Rubin, G. M., . . . Card, G. M. (2017). Ultra-selective looming detection from radial motion opponency. Nature, 551(7679), 237-241. doi: 10.1038/nature24626. https://doi.org/10.1038/nature24626
Knoblich, U., Huang, L., Zeng, H., & Li, L. (2019). Neuronal cell-subtype specificity of neural synchronization in mouse primary visual cortex. Nature Communications, 10(1), 2533. doi: 10.1038/s41467-019-10498-1. https://doi.org/10.1038/s41467-019-10498-1
Lee, K.-S., Huang, X., & Fitzpatrick, D. (2016). Topology of ON and OFF inputs in visual cortex enables an invariant columnar architecture. Nature, 533(7601), 90-94. doi: 10.1038/nature17941. https://doi.org/10.1038/nature17941
LeMessurier, A. M., Laboy-Juárez, K. J., McClain, K., Chen, S., Nguyen, T., & Feldman, D. E. (2019). Enrichment drives emergence of functional columns and improves sensory coding in the whisker map in L2/3 of mouse S1. eLife, 8, e46321. doi: 10.7554/eLife.46321. https://doi.org/10.7554/eLife.46321
Lerman, G. M., Little, J. P., Gill, J. V., Rinberg, D., & Shoham, S. (2019). Real-Time In Situ Holographic Optogenetics Confocally Unraveled Sculpting Microscopy. [https://doi.org/10.1002/lpor.201900144]. Laser & Photonics Reviews, 13(9), 1900144. doi: https://doi.org/10.1002/lpor.201900144. https://doi.org/10.1002/lpor.201900144
Light, S. E. W., & Jontes, J. D. (2019). Multiplane Calcium Imaging Reveals Disrupted Development of Network Topology in Zebrafish pcdh19 Mutants. eNeuro, 6(3), ENEURO.0420-0418.2019. doi: 10.1523/eneuro.0420-18.2019. https://pubmed.ncbi.nlm.nih.gov/31061071
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525332/
Lin, Q., Manley, J., Helmreich, M., Schlumm, F., Li, J. M., Robson, D. N., . . . Vaziri, A. (2020). Cerebellar Neurodynamics Predict Decision Timing and Outcome on the Single-Trial Level. Cell, 180(3), 536-551.e517. doi: https://doi.org/10.1016/j.cell.2019.12.018. https://www.sciencedirect.com/science/article/pii/S0092867419313807
Liu, H., Du, Y., Peng, X., Zhou, X., Qiu, P., & Wang, K. (2017). Sealing of Immersion Deuterium Dioxide and Its Application to Signal Maintenance for Ex-Vivo and In-Vivo Multiphoton Microscopy Excited at the 1700-nm Window. IEEE Photonics Journal, 9(5), 1-8. doi: 10.1109/jphot.2017.2737012.
Liu, H., Zhuang, Z., He, J., Tong, S., He, C., Deng, X., . . . Wang, K. (2019). High-energy polarized soliton synthesis and its application to deep-brain 3-photon microscopy in vivo. Optics Express, 27(11), 15309-15317. doi: 10.1364/oe.27.015309. http://www.opticsexpress.org/abstract.cfm?URI=oe-27-11-15309
Liu, R., Ball, N., Brockill, J., Kuan, L., Millman, D., White, C., . . . Saggau, P. (2018). Multi-plane Imaging of Neural Activity From the Mammalian Brain Using a Fast-switching Liquid Crystal Spatial Light Modulator. bioRxiv, 506618. doi: 10.1101/506618. http://biorxiv.org/content/early/2018/12/30/506618.abstract
Long, B., Li, L., Knoblich, U., Zeng, H., & Peng, H. (2015). 3D Image-Guided Automatic Pipette Positioning for Single Cell Experiments in vivo. Scientific Reports, 5(1), 18426. doi: 10.1038/srep18426. https://doi.org/10.1038/srep18426
Lur, G., Vinck, Martin A., Tang, L., Cardin, Jessica A., & Higley, Michael J. (2016). Projection-Specific Visual Feature Encoding by Layer 5 Cortical Subnetworks. Cell Reports, 14(11), 2538-2545. doi: https://doi.org/10.1016/j.celrep.2016.02.050. https://www.sciencedirect.com/science/article/pii/S2211124716301711
Ma, L., Jongbloets, B. C., Xiong, W.-H., Melander, J. B., Qin, M., Lameyer, T. J., . . . Zhong, H. (2018). A Highly Sensitive A-Kinase Activity Reporter for Imaging Neuromodulatory Events in Awake Mice. Neuron, 99(4), 665-679.e665. doi: https://doi.org/10.1016/j.neuron.2018.07.020. https://www.sciencedirect.com/science/article/pii/S0896627318305944
Ma, Z., Liu, H., Komiyama, T., & Wessel, R. (2020). Stability of motor cortex network states during learning-associated neural reorganizations. Journal of Neurophysiology, 124(5), 1327-1342. doi: 10.1152/jn.00061.2020. https://journals.physiology.org/doi/abs/10.1152/jn.00061.2020
Makino, H., Ren, C., Liu, H., Kim, A. N., Kondapaneni, N., Liu, X., . . . Komiyama, T. (2017). Transformation of Cortex-wide Emergent Properties during Motor Learning. Neuron, 94(4), 880-890.e888. doi: https://doi.org/10.1016/j.neuron.2017.04.015. https://www.sciencedirect.com/science/article/pii/S0896627317303410
Maltese, M., March, J. R., Bashaw, A. G., & Tritsch, N. X. (2019). Dopamine modulates the size of striatal projection neuron ensembles. bioRxiv, 865006. doi: 10.1101/865006. http://biorxiv.org/content/early/2019/12/05/865006.abstract
Maltese, M., March, J. R., Bashaw, A. G., & Tritsch, N. X. (2021). Dopamine differentially modulates the size of projection neuron ensembles in the intact and dopamine-depleted striatum. eLife, 10, e68041. doi: 10.7554/eLife.68041. https://doi.org/10.7554/eLife.68041
Mamiya, A., Gurung, P., & Tuthill, J. C. (2018). Neural Coding of Leg Proprioception in Drosophila. Neuron, 100(3), 636-650.e636. doi: https://doi.org/10.1016/j.neuron.2018.09.009. https://www.sciencedirect.com/science/article/pii/S0896627318307827
Marques, T., Summers, M. T., Fioreze, G., Fridman, M., Dias, R. F., Feller, M. B., & Petreanu, L. (2018). A Role for Mouse Primary Visual Cortex in Motion Perception. Current Biology, 28(11), 1703-1713.e1706. doi: https://doi.org/10.1016/j.cub.2018.04.012. https://www.sciencedirect.com/science/article/pii/S0960982218304408
Mateo, C., Knutsen, P. M., Tsai, P. S., Shih, A. Y., & Kleinfeld, D. (2017). Entrainment of Arteriole Vasomotor Fluctuations by Neural Activity Is a Basis of Blood-Oxygenation-Level-Dependent “Resting-State” Connectivity. Neuron, 96(4), 936-948.e933. doi: https://doi.org/10.1016/j.neuron.2017.10.012. https://www.sciencedirect.com/science/article/pii/S0896627317309807
Mayrhofer, J. M., El-Boustani, S., Foustoukos, G., Auffret, M., Tamura, K., & Petersen, C. C. H. (2019). Distinct Contributions of Whisker Sensory Cortex and Tongue-Jaw Motor Cortex in a Goal-Directed Sensorimotor Transformation. Neuron, 103(6), 1034-1043.e1035. doi: https://doi.org/10.1016/j.neuron.2019.07.008. https://www.sciencedirect.com/science/article/pii/S0896627319306348
Meier, M., & Borst, A. (2019). Extreme Compartmentalization in a Drosophila Amacrine Cell. Current Biology, 29(9), 1545-1550.e1542. doi: https://doi.org/10.1016/j.cub.2019.03.070. https://www.sciencedirect.com/science/article/pii/S0960982219303987
Meshulam, L., Gauthier, J. L., Brody, C. D., Tank, D. W., & Bialek, W. (2017). Collective Behavior of Place and Non-place Neurons in the Hippocampal Network. Neuron, 96(5), 1178-1191.e1174. doi: https://doi.org/10.1016/j.neuron.2017.10.027. https://www.sciencedirect.com/science/article/pii/S0896627317309960
Mikael, T. E., David, R., Nancy, H.-D., Marco, W., Christoph, H., Rainer, A. L., . . . Marco, A. (2020). Surgical microscope with integrated fluorescence lifetime imaging for 5-aminolevulinic acid fluorescence-guided neurosurgery. Journal of Biomedical Optics, 25(7), 1-7. doi: 10.1117/1.jbo.25.7.071202. https://doi.org/10.1117/1.JBO.25.7.071202
Minamisawa, G., Kwon, S. E., Chevée, M., Brown, S. P., & O’Connor, D. H. (2018). A Non-canonical Feedback Circuit for Rapid Interactions between Somatosensory Cortices. Cell Reports, 23(9), 2718-2731.e2716. doi: https://doi.org/10.1016/j.celrep.2018.04.115. https://www.sciencedirect.com/science/article/pii/S2211124718307150
Minderer, M., Brown, K. D., & Harvey, C. D. (2019). The Spatial Structure of Neural Encoding in Mouse Posterior Cortex during Navigation. Neuron, 102(1), 232-248.e211. doi: https://doi.org/10.1016/j.neuron.2019.01.029. https://www.sciencedirect.com/science/article/pii/S089662731930056X
Mishra, A., Salari, A., Berigan, B. R., Miguel, K. C., Amirshenava, M., Robinson, A., . . . Zars, T. (2018). The Drosophila Gr28bD product is a non-specific cation channel that can be used as a novel thermogenetic tool. Scientific Reports, 8(1), 901. doi: 10.1038/s41598-017-19065-4. https://doi.org/10.1038/s41598-017-19065-4
Mitani, A., Dong, M., & Komiyama, T. (2018). Brain-Computer Interface with Inhibitory Neurons Reveals Subtype-Specific Strategies. Current Biology, 28(1), 77-83.e74. doi: https://doi.org/10.1016/j.cub.2017.11.035. https://www.sciencedirect.com/science/article/pii/S0960982217315178
Mitani, A., & Komiyama, T. (2018). Real-Time Processing of Two-Photon Calcium Imaging Data Including Lateral Motion Artifact Correction. [Methods]. Frontiers in Neuroinformatics, 12(98). doi: 10.3389/fninf.2018.00098. https://www.frontiersin.org/article/10.3389/fninf.2018.00098
Moore, A. K., Weible, A. P., Balmer, T. S., Trussell, L. O., & Wehr, M. (2018). Rapid Rebalancing of Excitation and Inhibition by Cortical Circuitry. Neuron, 97(6), 1341-1355.e1346. doi: https://doi.org/10.1016/j.neuron.2018.01.045. https://www.sciencedirect.com/science/article/pii/S0896627318300709
Morcos, A. S., & Harvey, C. D. (2016). History-dependent variability in population dynamics during evidence accumulation in cortex. Nature Neuroscience, 19(12), 1672-1681. doi: 10.1038/nn.4403. https://doi.org/10.1038/nn.4403
Moura, C. C., Bourdakos, K. N., Tare, R. S., Oreffo, R. O. C., & Mahajan, S. (2019). Live-imaging of Bioengineered Cartilage Tissue using Multimodal Non-linear Molecular Imaging. Scientific Reports, 9(1), 5561. doi: 10.1038/s41598-019-41466-w. https://doi.org/10.1038/s41598-019-41466-w
Murphy-Royal, C., Johnston, A. D., Boyce, A. K. J., Diaz-Castro, B., Institoris, A., Peringod, G., . . . Gordon, G. R. (2020). Stress gates an astrocytic energy reservoir to impair synaptic plasticity. Nature Communications, 11(1), 2014. doi: 10.1038/s41467-020-15778-9. https://doi.org/10.1038/s41467-020-15778-9
Oda, K., Vierock, J., Oishi, S., Rodriguez-Rozada, S., Taniguchi, R., Yamashita, K., . . . Nureki, O. (2018). Crystal structure of the red light-activated channelrhodopsin Chrimson. Nature Communications, 9(1), 3949. doi: 10.1038/s41467-018-06421-9. https://doi.org/10.1038/s41467-018-06421-9
Oppermann, J., Fischer, P., Silapetere, A., Liepe, B., Rodriguez-Rozada, S., Flores-Uribe, J., . . . Wietek, J. (2019). MerMAIDs: a family of metagenomically discovered marine anion-conducting and intensely desensitizing channelrhodopsins. Nature Communications, 10(1), 3315. doi: 10.1038/s41467-019-11322-6. https://doi.org/10.1038/s41467-019-11322-6
Orlova, N., Tsyboulski, D., Najafi, F., Seid, S., Kivikas, S., Kato, I., . . . Saggau, P. (2020). Multiplane Mesoscope reveals distinct cortical interactions following expectation violations. bioRxiv, 2020.2010.2006.328294. doi: 10.1101/2020.10.06.328294. http://biorxiv.org/content/early/2020/10/10/2020.10.06.328294.abstract
Parker, J. G., Marshall, J. D., Ahanonu, B., Wu, Y.-W., Kim, T. H., Grewe, B. F., . . . Schnitzer, M. J. (2018). Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature, 557(7704), 177-182. doi: 10.1038/s41586-018-0090-6. https://doi.org/10.1038/s41586-018-0090-6
Pearre, B. W., Michas, C., Tsang, J.-M., Gardner, T. J., & Otchy, T. M. (2019). Fast micron-scale 3D printing with a resonant-scanning two-photon microscope. Additive Manufacturing, 30, 100887. doi: https://doi.org/10.1016/j.addma.2019.100887. https://www.sciencedirect.com/science/article/pii/S2214860418303944
Peron, S., Pancholi, R., Voelcker, B., Wittenbach, J. D., Ólafsdóttir, H. F., Freeman, J., & Svoboda, K. (2020). Recurrent interactions in local cortical circuits. Nature, 579(7798), 256-259. doi: 10.1038/s41586-020-2062-x. https://doi.org/10.1038/s41586-020-2062-x
Pichler, P., & Lagnado, L. (2019). The Transfer Characteristics of Hair Cells Encoding Mechanical Stimuli in the Lateral Line of Zebrafish. The Journal of Neuroscience, 39(1), 112. doi: 10.1523/jneurosci.1472-18.2018. http://www.jneurosci.org/content/39/1/112.abstract
Pisanello, M., Pisano, F., Hyun, M., Maglie, E., Balena, A., De Vittorio, M., . . . Pisanello, F. (2019). The Three-Dimensional Signal Collection Field for Fiber Photometry in Brain Tissue. [Original Research]. Frontiers in Neuroscience, 13(82). doi: 10.3389/fnins.2019.00082. https://www.frontiersin.org/article/10.3389/fnins.2019.00082
Pisano, F., Pisanello, M., Maglie, E., Balena, A., Sileo, L., Spagnolo, B., . . . Pisanello, F. (2018). Multipoint and large volume fiber photometry with a single tapered optical fiber implant. bioRxiv, 455766. doi: 10.1101/455766. http://biorxiv.org/content/early/2018/10/29/455766.abstract
Podgorski, K., & Ranganathan, G. (2016). Brain heating induced by near-infrared lasers during multiphoton microscopy. Journal of Neurophysiology, 116(3), 1012-1023. doi: 10.1152/jn.00275.2016. https://doi.org/10.1152/jn.00275.2016
Poleg-Polsky, A., Ding, H., & Diamond, J. S. (2018). Functional Compartmentalization within Starburst Amacrine Cell Dendrites in the Retina. Cell Reports, 22(11), 2898-2908. doi: https://doi.org/10.1016/j.celrep.2018.02.064. https://www.sciencedirect.com/science/article/pii/S2211124718302584
Pottackal, J., Singer, J. H., & Demb, J. B. (2020). Receptoral Mechanisms for Fast Cholinergic Transmission in Direction-Selective Retinal Circuitry. Frontiers in cellular neuroscience, 14, 604163-604163. doi: 10.3389/fncel.2020.604163. https://pubmed.ncbi.nlm.nih.gov/33324168
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726240/
Pujala, A., & Koyama, M. (2019). Chronology-based architecture of descending circuits that underlie the development of locomotor repertoire after birth. eLife, 8, e42135. doi: 10.7554/eLife.42135. https://doi.org/10.7554/eLife.42135
Ramachandra, V., Pawlak, V., Wallace, D. J., & Kerr, J. N. D. (2020). Impact of visual callosal pathway is dependent upon ipsilateral thalamus. Nature Communications, 11(1), 1889. doi: 10.1038/s41467-020-15672-4. https://doi.org/10.1038/s41467-020-15672-4
Reinhard, K., Li, C., Do, Q., Burke, E. G., Heynderickx, S., & Farrow, K. (2019). A projection specific logic to sampling visual inputs in mouse superior colliculus. eLife, 8, e50697. doi: 10.7554/eLife.50697. https://doi.org/10.7554/eLife.50697
Ruiz-Uribe, N. E., Ahn, S. J., & Schaffer, C. B. (2019, 2019/04/14). Label Free Imaging of Cortical Blood Vessels Using Third Harmonic Generation (THG) Microscopy. Paper presented at the Biophotonics Congress: Optics in the Life Sciences Congress 2019 (BODA,BRAIN,NTM,OMA,OMP), Tucson, Arizona.
Samonds, J. M., Feese, B. D., Lee, T. S., & Kuhlman, S. J. (2017). Nonuniform surround suppression of visual responses in mouse V1. Journal of Neurophysiology, 118(6), 3282-3292. doi: 10.1152/jn.00172.2017. https://doi.org/10.1152/jn.00172.2017
Schiavo, J. K., Valtcheva, S., Bair-Marshall, C., Song, S. C., Martin, K. A., & Froemke, R. C. (2020). Innate sensitivity and plastic mechanisms in auditory cortex for reliable maternal behavior. bioRxiv, 2020.2003.2011.987941. doi: 10.1101/2020.03.11.987941. http://biorxiv.org/content/early/2020/03/12/2020.03.11.987941.abstract
Schiavo, J. K., Valtcheva, S., Bair-Marshall, C. J., Song, S. C., Martin, K. A., & Froemke, R. C. (2020). Innate and plastic mechanisms for maternal behaviour in auditory cortex. Nature, 587(7834), 426-431. doi: 10.1038/s41586-020-2807-6. https://pubmed.ncbi.nlm.nih.gov/33029014
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677212/
Scholl, B., Thomas, C. I., Ryan, M. A., Kamasawa, N., & Fitzpatrick, D. (2021). Cortical response selectivity derives from strength in numbers of synapses. Nature, 590(7844), 111-114. doi: 10.1038/s41586-020-03044-3. https://doi.org/10.1038/s41586-020-03044-3
Scholl, B., Wilson, D. E., & Fitzpatrick, D. (2017). Local Order within Global Disorder: Synaptic Architecture of Visual Space. Neuron, 96(5), 1127-1138.e1124. doi: https://doi.org/10.1016/j.neuron.2017.10.017. https://www.sciencedirect.com/science/article/pii/S0896627317309856
Scholl, B., Wilson, D. E., Jaepel, J., & Fitzpatrick, D. (2019). Functional Logic of Layer 2/3 Inhibitory Connectivity in the Ferret Visual Cortex. Neuron, 104(3), 451-457.e453. doi: https://doi.org/10.1016/j.neuron.2019.08.004. https://www.sciencedirect.com/science/article/pii/S0896627319306889
Scott, B. B., Constantinople, C. M., Akrami, A., Hanks, T. D., Brody, C. D., & Tank, D. W. (2017). Fronto-parietal Cortical Circuits Encode Accumulated Evidence with a Diversity of Timescales. Neuron, 95(2), 385-398.e385. doi: https://doi.org/10.1016/j.neuron.2017.06.013. https://www.sciencedirect.com/science/article/pii/S0896627317305111
Shen, J., Blute, T. A., Liberti, W. A., Yen, W., Liberti, D. C., Kotten, D. N., . . . Gardner, T. J. (2017). Songbird organotypic culture as an in vitro model for interrogating sparse sequencing networks. bioRxiv, 164228. doi: 10.1101/164228. http://biorxiv.org/content/early/2017/07/17/164228.abstract
Smith, G. B., & Fitzpatrick, D. (2016). Viral Injection and Cranial Window Implantation for In Vivo Two-Photon Imaging. In S. D. Schwartzbach, O. Skalli & T. Schikorski (Eds.), High-Resolution Imaging of Cellular Proteins: Methods and Protocols (pp. 171-185). New York, NY: Springer New York.
Srinivasan, R., Huang, B. S., Venugopal, S., Johnston, A. D., Chai, H., Zeng, H., . . . Khakh, B. S. (2015). Ca2+ signaling in astrocytes from Ip3r2−/− mice in brain slices and during startle responses in vivo. Nature Neuroscience, 18(5), 708-717. doi: 10.1038/nn.4001. https://doi.org/10.1038/nn.4001
Stein, I. S., Hill, T. C., Oh, W. C., Parajuli, L. K., & Zito, K. (2019). Two-Photon Glutamate Uncaging to Study Structural and Functional Plasticity of Dendritic Spines. In E. Hartveit (Ed.), Multiphoton Microscopy (pp. 65-85). New York, NY: Springer New York.
Takahashi, N., Moberg, S., Zolnik, T. A., Catanese, J., Sachdev, R. N. S., Larkum, M. E., & Jaeger, D. (2021). Thalamic input to motor cortex facilitates goal-directed action initiation. Current Biology. doi: https://doi.org/10.1016/j.cub.2021.06.089. https://www.sciencedirect.com/science/article/pii/S0960982221009180
Takasaki, K., Abbasi-Asl, R., & Waters, J. (2020). Superficial Bound of the Depth Limit of Two-Photon Imaging in Mouse Brain. eNeuro, 7(1), ENEURO.0255-0219.2019. doi: 10.1523/eneuro.0255-19.2019. https://pubmed.ncbi.nlm.nih.gov/31907211
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984806/
Tan, H. L., Roth, R. H., Graves, A. R., Cudmore, R. H., & Huganir, R. L. (2020). Lamina-specific AMPA receptor dynamics following visual deprivation in vivo. eLife, 9, e52420. doi: 10.7554/eLife.52420. https://doi.org/10.7554/eLife.52420
Tang, A. D., Bennett, W., Bindoff, A. D., Collins, J., Garry, M. I., Summers, J. J., . . . Canty, A. J. (2021). Low intensity repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex. bioRxiv, 2021.2003.2010.434706. doi: 10.1101/2021.03.10.434706. http://biorxiv.org/content/early/2021/03/11/2021.03.10.434706.abstract
Thomas, C. I., Ryan, M. A., Scholl, B., Guerrero-Given, D., Fitzpatrick, D., & Kamasawa, N. (2021). Targeting Functionally Characterized Synaptic Architecture Using Inherent Fiducials and 3D Correlative Microscopy. Microscopy and Microanalysis, 27(1), 156-169. doi: Doi: 10.1017/s1431927620024757. https://www.cambridge.org/core/article/targeting-functionally-characteri…
Tiriac, A., Smith, B. E., & Feller, M. B. (2018). Light Prior to Eye Opening Promotes Retinal Waves and Eye-Specific Segregation. Neuron, 100(5), 1059-1065.e1054. doi: https://doi.org/10.1016/j.neuron.2018.10.011. https://www.sciencedirect.com/science/article/pii/S0896627318308997
Tran, C. H. T., Peringod, G., & Gordon, G. R. (2018). Astrocytes Integrate Behavioral State and Vascular Signals during Functional Hyperemia. Neuron, 100(5), 1133-1148.e1133. doi: https://doi.org/10.1016/j.neuron.2018.09.045. https://www.sciencedirect.com/science/article/pii/S089662731830847X
Tran-Van-Minh, A., Rebola, N., Hoehne, A., & DiGregorio, D. A. (2019). Two-Photon Neurotransmitter Uncaging for the Study of Dendritic Integration. In E. Hartveit (Ed.), Multiphoton Microscopy (pp. 33-64). New York, NY: Springer New York.
Tsutsumi, S., Chadney, O., Yiu, T.-L., Bäumler, E., Faraggiana, L., Beau, M., & Häusser, M. (2020). Purkinje Cell Activity Determines the Timing of Sensory-Evoked Motor Initiation. Cell Reports, 33(12), 108537. doi: https://doi.org/10.1016/j.celrep.2020.108537. https://www.sciencedirect.com/science/article/pii/S2211124720315266
Tsutsumi, S., Hidaka, N., Isomura, Y., Matsuzaki, M., Sakimura, K., Kano, M., & Kitamura, K. (2019). Modular organization of cerebellar climbing fiber inputs during goal-directed behavior. eLife, 8, e47021. doi: 10.7554/eLife.47021. https://doi.org/10.7554/eLife.47021
Tyson, A. L., Rousseau, C. V., Niedworok, C. J., Keshavarzi, S., Tsitoura, C., Cossell, L., . . . Margrie, T. W. (2021). A deep learning algorithm for 3D cell detection in whole mouse brain image datasets. PLOS Computational Biology, 17(5), e1009074. doi: 10.1371/journal.pcbi.1009074. https://doi.org/10.1371/journal.pcbi.1009074
Vavladeli, A., Daigle, T., Zeng, H., Crochet, S., & Petersen, C. C. H. (2020). Projection-specific Activity of Layer 2/3 Neurons Imaged in Mouse Primary Somatosensory Barrel Cortex During a Whisker Detection Task. Function, 1(zqaa008). doi: 10.1093/function/zqaa008. https://doi.org/10.1093/function/zqaa008
Wagner, M. J., Kim, T. H., Kadmon, J., Nguyen, N. D., Ganguli, S., Schnitzer, M. J., & Luo, L. (2019). Shared Cortex-Cerebellum Dynamics in the Execution and Learning of a Motor Task. Cell, 177(3), 669-682.e624. doi: https://doi.org/10.1016/j.cell.2019.02.019. https://www.sciencedirect.com/science/article/pii/S0092867419301680
Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J., & Luo, L. (2017). Cerebellar granule cells encode the expectation of reward. Nature, 544(7648), 96-100. doi: 10.1038/nature21726. https://doi.org/10.1038/nature21726
Wang, C.-C., Moorhouse, S., Stain, C., Seymour, M., Green, E., Penfield, S., & Moger, J. (2018). In situ chemically specific mapping of agrochemical seed coatings using stimulated Raman scattering microscopy. [https://doi.org/10.1002/jbio.201800108]. Journal of Biophotonics, 11(11), e201800108. doi: https://doi.org/10.1002/jbio.201800108. https://doi.org/10.1002/jbio.201800108
Wang, K., Du, Y., Liu, H., Gan, M., Tong, S., Wen, W., . . . Qiu, P. (2019). Visualizing the “sandwich” structure of osteocytes in their native environment deep in bone in vivo. [https://doi.org/10.1002/jbio.201800360]. Journal of Biophotonics, 12(4), e201800360. doi: https://doi.org/10.1002/jbio.201800360. https://doi.org/10.1002/jbio.201800360
Wang, K., Pan, Y., Tong, S., Chen, X., Lu, Y., & Qiu, P. (2021). Deep-skin multiphoton microscopy in vivo excited at 1600 nm: A comparative investigation with silicone oil and deuterium dioxide immersion. [https://doi.org/10.1002/jbio.202100076]. Journal of Biophotonics, n/a(n/a), e202100076. doi: https://doi.org/10.1002/jbio.202100076. https://doi.org/10.1002/jbio.202100076
Wang, K., Wen, W., Liu, H., Du, Y., Zhuang, Z., & Qiu, P. (2018). Transmittance Characterization of Objective Lenses Covering all Four Near Infrared Optical Windows and its Application to Three-Photon Microscopy Excited at 1820 nm. IEEE Photonics Journal, 10(3), 1-7. doi: 10.1109/jphot.2018.2828435.
Wang, K., Wen, W., Wang, Y., Wang, K., He, J., Wang, J., . . . Qiu, P. (2017). Order-of-magnitude multiphoton signal enhancement based on characterization of absorption spectra of immersion oils at the 1700-nm window. Optics Express, 25(6), 5909-5916. doi: 10.1364/oe.25.005909. http://www.opticsexpress.org/abstract.cfm?URI=oe-25-6-5909
Wang, Y., Wang, K., Wen, W., & Qiu, P. (2016). Comparison of Signal Detection of GaAsP and GaAs PMTs for Multiphoton Microscopy at the 1700-nm window. IEEE Photonics Journal, 8(3), 1-6. doi: 10.1109/jphot.2016.2570005.
Weisenburger, S., Tejera, F., Demas, J., Chen, B., Manley, J., Sparks, F. T., . . . Vaziri, A. (2019). Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy. Cell, 177(4), 1050-1066.e1014. doi: https://doi.org/10.1016/j.cell.2019.03.011. https://www.sciencedirect.com/science/article/pii/S0092867419302739
Wilson, D. E., Scholl, B., & Fitzpatrick, D. (2018). Differential tuning of excitation and inhibition shapes direction selectivity in ferret visual cortex. Nature, 560(7716), 97-101. doi: 10.1038/s41586-018-0354-1. https://doi.org/10.1038/s41586-018-0354-1
Wilson, D. E., Smith, G. B., Jacob, A. L., Walker, T., Dimidschstein, J., Fishell, G., & Fitzpatrick, D. (2017). GABAergic Neurons in Ferret Visual Cortex Participate in Functionally Specific Networks. Neuron, 93(5), 1058-1065.e1054. doi: https://doi.org/10.1016/j.neuron.2017.02.035. https://www.sciencedirect.com/science/article/pii/S0896627317301435
Wilson, D. E., Whitney, D. E., Scholl, B., & Fitzpatrick, D. (2016). Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nature Neuroscience, 19(8), 1003-1009. doi: 10.1038/nn.4323. https://doi.org/10.1038/nn.4323
Xin, Y., Zhong, L., Zhang, Y., Zhou, T., Pan, J., & Xu, N.-l. (2019). Sensory-to-Category Transformation via Dynamic Reorganization of Ensemble Structures in Mouse Auditory Cortex. Neuron, 103(5), 909-921.e906. doi: https://doi.org/10.1016/j.neuron.2019.06.004. https://www.sciencedirect.com/science/article/pii/S089662731930532X
Yao, S., Yuan, P., Ouellette, B., Zhou, T., Mortrud, M., Balaram, P., . . . Cetin, A. (2020). RecV recombinase system for in vivo targeted optogenomic modifications of single cells or cell populations. Nature Methods, 17(4), 422-429. doi: 10.1038/s41592-020-0774-3. https://doi.org/10.1038/s41592-020-0774-3
Yap, K., Drakew, A., Smilovic, D., Rietsche, M., Paul, M. H., Vuksic, M., . . . Deller, T. (2020). The actin-modulating protein synaptopodin mediates long-term survival of dendritic spines. eLife, 9, e62944. doi: 10.7554/eLife.62944. https://doi.org/10.7554/eLife.62944
Ye, L., Orynbayev, M., Zhu, X., Lim, E. Y., Dereddi, R. R., Agarwal, A., . . . Paukert, M. (2020). Ethanol abolishes vigilance-dependent astroglia network activation in mice by inhibiting norepinephrine release. Nature Communications, 11(1), 6157. doi: 10.1038/s41467-020-19475-5. https://doi.org/10.1038/s41467-020-19475-5
Yu, C.-H., Stirman, J. N., Yu, Y., Hira, R., & Smith, S. L. (2020). Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry. bioRxiv, 2020.2009.2020.305508. doi: 10.1101/2020.09.20.305508. http://biorxiv.org/content/early/2020/09/20/2020.09.20.305508.abstract
Yuhao, Y., Niraj, S., & Fake, L. (2020). Monitoring uptake of palmitic acid by glioma cells using stimulated Raman scattering microscopy. Paper presented at the Proc.SPIE.
Zeiger, W. A., Marosi, M., Saggi, S., Noble, N., Samad, I., & Portera-Cailliau, C. (2020). Plasticity after cortical stroke involves potentiating responses of pre-existing circuits but not functional remapping to new circuits. bioRxiv, 2020.2011.2009.375840. doi: 10.1101/2020.11.09.375840. http://biorxiv.org/content/early/2020/11/10/2020.11.09.375840.abstract
Zeiger, W. A., Marosi, M., Saggi, S., Noble, N., Samad, I., & Portera-Cailliau, C. (2021). Barrel cortex plasticity after photothrombotic stroke involves potentiating responses of pre-existing circuits but not functional remapping to new circuits. Nature Communications, 12(1), 3972. doi: 10.1038/s41467-021-24211-8. https://doi.org/10.1038/s41467-021-24211-8
Zhao, L., Li, Z., Vong, J. S. L., Chen, X., Lai, H.-M., Yan, L. Y. C., . . . Ko, H. (2020). Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain. Nature Communications, 11(1), 4413. doi: 10.1038/s41467-020-18249-3. https://doi.org/10.1038/s41467-020-18249-3
Zhao, Y., Bushey, D., Zhao, Y., Schreiter, E. R., Harrison, D. J., Wong, A. M., & Campbell, R. E. (2018). Inverse-response Ca2+ indicators for optogenetic visualization of neuronal inhibition. Scientific Reports, 8(1), 11758. doi: 10.1038/s41598-018-30080-x. https://doi.org/10.1038/s41598-018-30080-x
Zhou, L., Nho, K., Haddad, M. G., Cherepacha, N., Tubeleviciute-Aydin, A., Tsai, A. P., . . . LeBlanc, A. C. (2021). Rare CASP6N73T variant associated with hippocampal volume exhibits decreased proteolytic activity, synaptic transmission defect, and neurodegeneration. Scientific Reports, 11(1), 12695. doi: 10.1038/s41598-021-91367-0. https://doi.org/10.1038/s41598-021-91367-0
Zhu, Y., & Gabbiani, F. (2016). Fine and distributed subcellular retinotopy of excitatory inputs to the dendritic tree of a collision-detecting neuron. Journal of Neurophysiology, 115(6), 3101-3112. doi: 10.1152/jn.00044.2016. https://doi.org/10.1152/jn.00044.2016
Zhu, Y., & Gabbiani, F. (2018). Combined Two-Photon Calcium Imaging and Single-Ommatidium Visual Stimulation to Study Fine-Scale Retinotopy in Insects. In R. V. Sillitoe (Ed.), Extracellular Recording Approaches (pp. 185-206). New York, NY: Springer New York.