ScanImage Citations

ScanImage® Citations

 

 

174 citations in peer reviewed journals, and counting....

ScanImage® can help you publish your data in high impact journals

Agrawal, S., Dickinson, E. S., Sustar, A., Gurung, P., Shepherd, D., Truman, J. W., & Tuthill, J. C. (2020). Central processing of leg proprioception in Drosophila. eLife, 9, e60299. doi: 10.7554/eLife.60299. https://doi.org/10.7554/eLife.60299

Allen, C. H., Ahmed, D., Raiche-Tanner, O., Chauhan, V., Mostaço-Guidolin, L., Cassol, E., & Murugkar, S. (2021). Label-free two-photon imaging of mitochondrial activity in murine macrophages stimulated with bacterial and viral ligands. Scientific Reports, 11(1), 14081. doi: 10.1038/s41598-021-93043-9. https://doi.org/10.1038/s41598-021-93043-9

Allen, C. H., Benjamin, H., Olivia, R.-T., & Sangeeta, M. (2021). Compact silicon photomultiplier detection of multimodal multiphoton microscopy signals. Paper presented at the Proc.SPIE.

Allen, C. H., Hansson, B., Raiche-Tanner, O., & Murugkar, S. (2020). Coherent anti-Stokes Raman scattering imaging using silicon photomultipliers. Optics Letters, 45(8), 2299-2302. doi: 10.1364/ol.390050. http://ol.osa.org/abstract.cfm?URI=ol-45-8-2299

Arttamangkul, S., Plazek, A., Platt, E. J., Jin, H., Murray, T. F., Birdsong, W. T., . . . Williams, J. T. (2019). Visualizing endogenous opioid receptors in living neurons using ligand-directed chemistry. eLife, 8, e49319. doi: 10.7554/eLife.49319. https://doi.org/10.7554/eLife.49319

Aso, Y., Ray, R. P., Long, X., Bushey, D., Cichewicz, K., Ngo, T.-T. B., . . . Rubin, G. M. (2019). Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify memory dynamics. eLife, 8, e49257. doi: 10.7554/eLife.49257. https://doi.org/10.7554/eLife.49257

Bale, M. R., Bitzidou, M., Giusto, E., Kinghorn, P., & Maravall, M. (2021). Sequence Learning Induces Selectivity to Multiple Task Parameters in Mouse Somatosensory Cortex. Current Biology, 31(3), 473-485.e475. doi: https://doi.org/10.1016/j.cub.2020.10.059. https://www.sciencedirect.com/science/article/pii/S096098222031602X

Benbenishty, A., Gadrich, M., Cottarelli, A., Lubart, A., Kain, D., Amer, M., . . . Blinder, P. (2019). Prophylactic TLR9 stimulation reduces brain metastasis through microglia activation. PLOS Biology, 17(3), e2006859. doi: 10.1371/journal.pbio.2006859. https://doi.org/10.1371/journal.pbio.2006859

Bjørnstad, D. M., Åbjørsbråten, K. S., Hennestad, E., Cunen, C., Hermansen, G. H., Bojarskaite, L., . . . Enger, R. (2021). Begonia—A Two-Photon Imaging Analysis Pipeline for Astrocytic Ca2+ Signals. [Original Research]. Frontiers in cellular neuroscience, 15(176). doi: 10.3389/fncel.2021.681066. https://www.frontiersin.org/article/10.3389/fncel.2021.681066

Blot, A., Roth, M. M., Gasler, I., Javadzadeh, M., Imhof, F., & Hofer, S. B. (2021). Visual intracortical and transthalamic pathways carry distinct information to cortical areas. Neuron, 109(12), 1996-2008.e1996. doi: https://doi.org/10.1016/j.neuron.2021.04.017. https://www.sciencedirect.com/science/article/pii/S089662732100283X

Chakraborty, T., Chen, B., Daetwyler, S., Chang, B.-J., Vanderpoorten, O., Sapoznik, E., . . . Fiolka, R. (2020). Converting lateral scanning into axial focusing to speed up three-dimensional microscopy. Light: Science & Applications, 9(1), 165. doi: 10.1038/s41377-020-00401-9. https://doi.org/10.1038/s41377-020-00401-9

Chang, J. T., Whitney, D., & Fitzpatrick, D. (2020). Experience-Dependent Reorganization Drives Development of a Binocularly Unified Cortical Representation of Orientation. Neuron, 107(2), 338-350.e335. doi: https://doi.org/10.1016/j.neuron.2020.04.022. https://www.sciencedirect.com/science/article/pii/S0896627320303147

Chen, B., Chakraborty, T., Daetwyler, S., Manton, J. D., Dean, K., & Fiolka, R. (2020). Extended depth of focus multiphoton microscopy via incoherent pulse splitting. Biomedical Optics Express, 11(7), 3830-3842. doi: 10.1364/boe.393931. http://www.osapublishing.org/boe/abstract.cfm?URI=boe-11-7-3830

Chen, D., Ren, M., Zhang, D., Chen, J., Gu, S., & Chen, S.-C. (2020). Design of a multi-modality DMD-based two-photon microscope system. Optics Express, 28(20), 30187-30198. doi: 10.1364/oe.404652. http://www.opticsexpress.org/abstract.cfm?URI=oe-28-20-30187

Chen, X., Cheng, H., Deng, X., Tong, S., Li, J., Qiu, P., & Wang, K. (2021). Self-phase-modulated femtosecond laser source at 1603 nm and its application to deep-brain 3-photon microscopy in vivo. [https://doi.org/10.1002/jbio.202000349]. Journal of Biophotonics, 14(3), e202000349. doi: https://doi.org/10.1002/jbio.202000349. https://doi.org/10.1002/jbio.202000349

Cheng, H., Tong, S., Deng, X., Liu, H., Du, Y., He, C., . . . Wang, K. (2019). Deep-brain 2-photon fluorescence microscopy in vivo excited at the1700  nm window. Optics Letters, 44(17), 4432-4435. doi: 10.1364/ol.44.004432. http://ol.osa.org/abstract.cfm?URI=ol-44-17-4432

Cheung, J., Maire, P., Kim, J., Sy, J., & Hires, S. A. (2019). The Sensorimotor Basis of Whisker-Guided Anteroposterior Object Localization in Head-Fixed Mice. Current Biology, 29(18), 3029-3040.e3024. doi: https://doi.org/10.1016/j.cub.2019.07.068. https://www.sciencedirect.com/science/article/pii/S0960982219309480

Choi, J., Goncharov, V., Kleinbart, J., Orsborn, A., & Pesaran, B. (2018, 18-21 July 2018). Monkey-MIMMS: Towards Automated Cellular Resolution Large- Scale Two-Photon Microscopy In The Awake Macaque Monkey. Paper presented at the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

Chong, E. Z., Panniello, M., Barreiros, I., Kohl, M. M., & Booth, M. J. (2019). Quasi-simultaneous multiplane calcium imaging of neuronal circuits. Biomedical Optics Express, 10(1), 267-282. doi: 10.1364/boe.10.000267. http://www.osapublishing.org/boe/abstract.cfm?URI=boe-10-1-267

Clemens, J., Ozeri-Engelhard, N., & Murthy, M. (2018). Fast intensity adaptation enhances the encoding of sound in Drosophila. Nature Communications, 9(1), 134. doi: 10.1038/s41467-017-02453-9. https://doi.org/10.1038/s41467-017-02453-9

Collot, M., Wilms, C. D., Bentkhayet, A., Marcaggi, P., Couchman, K., Charpak, S., . . . Mallet, J.-M. (2015). CaRuby-Nano: a novel high affinity calcium probe for dual color imaging. eLife, 4, e05808. doi: 10.7554/eLife.05808. https://doi.org/10.7554/eLife.05808

Costa Moura, C., Lanham, S. A., Monfort, T., Bourdakos, K. N., Tare, R. S., Oreffo, R. O. C., & Mahajan, S. (2018). Quantitative temporal interrogation in 3D of bioengineered human cartilage using multimodal label-free imaging. Integrative Biology, 10(10), 635-645. doi: 10.1039/c8ib00050f. https://doi.org/10.1039/c8ib00050f

Dag, U., Lei, Z., Le, J. Q., Wong, A., Bushey, D., & Keleman, K. (2019). Neuronal reactivation during post-learning sleep consolidates long-term memory in Drosophila. eLife, 8, e42786. doi: 10.7554/eLife.42786. https://doi.org/10.7554/eLife.42786

Dana, H., Sun, Y., Mohar, B., Hulse, B. K., Kerlin, A. M., Hasseman, J. P., . . . Kim, D. S. (2019). High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nature Methods, 16(7), 649-657. doi: 10.1038/s41592-019-0435-6. https://doi.org/10.1038/s41592-019-0435-6

de Boer, W. D. A. M., Hirtz, J. J., Capretti, A., Gregorkiewicz, T., Izquierdo-Serra, M., Han, S., . . . Yuste, R. (2018). Neuronal photoactivation through second-harmonic near-infrared absorption by gold nanoparticles. Light: Science & Applications, 7(1), 100. doi: 10.1038/s41377-018-0103-0. https://doi.org/10.1038/s41377-018-0103-0

de Malmazet, D., Kühn, N. K., & Farrow, K. (2018). Retinotopic Separation of Nasal and Temporal Motion Selectivity in the Mouse Superior Colliculus. Current Biology, 28(18), 2961-2969.e2964. doi: https://doi.org/10.1016/j.cub.2018.07.001. https://www.sciencedirect.com/science/article/pii/S096098221830900X

Deverett, B., Koay, S. A., Oostland, M., & Wang, S. S. H. (2018). Cerebellar involvement in an evidence-accumulation decision-making task. eLife, 7, e36781. doi: 10.7554/eLife.36781. https://doi.org/10.7554/eLife.36781

Diana, G., Sainsbury, T. T. J., & Meyer, M. P. (2019). Bayesian inference of neuronal assemblies. PLOS Computational Biology, 15(10), e1007481. doi: 10.1371/journal.pcbi.1007481. https://doi.org/10.1371/journal.pcbi.1007481

Donzis, E. J., Estrada-Sánchez, A. M., Indersmitten, T., Oikonomou, K., Tran, C. H., Wang, C., . . . Levine, M. S. (2020). Cortical Network Dynamics Is Altered in Mouse Models of Huntington’s Disease. Cerebral Cortex, 30(4), 2372-2388. doi: 10.1093/cercor/bhz245. https://doi.org/10.1093/cercor/bhz245

Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N., & Harvey, C. D. (2017). Dynamic Reorganization of Neuronal Activity Patterns in Parietal Cortex. Cell, 170(5), 986-999.e916. doi: https://doi.org/10.1016/j.cell.2017.07.021. https://www.sciencedirect.com/science/article/pii/S0092867417308280

Dürst, C. D., Wiegert, J. S., Helassa, N., Kerruth, S., Coates, C., Schulze, C., . . . Oertner, T. G. (2019). High-speed imaging of glutamate release with genetically encoded sensors. Nature Protocols, 14(5), 1401-1424. doi: 10.1038/s41596-019-0143-9. https://doi.org/10.1038/s41596-019-0143-9

El-Boustani, S., Sermet, B. S., Foustoukos, G., Oram, T. B., Yizhar, O., & Petersen, C. C. H. (2020). Anatomically and functionally distinct thalamocortical inputs to primary and secondary mouse whisker somatosensory cortices. Nature Communications, 11(1), 3342. doi: 10.1038/s41467-020-17087-7. https://doi.org/10.1038/s41467-020-17087-7

Engelhard, B., Finkelstein, J., Cox, J., Fleming, W., Jang, H. J., Ornelas, S., . . . Witten, I. B. (2019). Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature, 570(7762), 509-513. doi: 10.1038/s41586-019-1261-9. https://doi.org/10.1038/s41586-019-1261-9

Esmaeili, V., Tamura, K., Muscinelli, S. P., Modirshanechi, A., Boscaglia, M., Lee, A. B., . . . Petersen, C. C. H. (2021). Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response. Neuron, 109(13), 2183-2201.e2189. doi: https://doi.org/10.1016/j.neuron.2021.05.005. https://www.sciencedirect.com/science/article/pii/S0896627321003317

Euler, T., Franke, K., & Baden, T. (2019). Studying a Light Sensor with Light: Multiphoton Imaging in the Retina. In E. Hartveit (Ed.), Multiphoton Microscopy (pp. 225-250). New York, NY: Springer New York.

Fast, A., Lal, A., Durkin, A. F., Lentsch, G., Harris, R. M., Zachary, C. B., . . . Balu, M. (2020). Fast, large area multiphoton exoscope (FLAME) for macroscopic imaging with microscopic resolution of human skin. Scientific Reports, 10(1), 18093. doi: 10.1038/s41598-020-75172-9. https://doi.org/10.1038/s41598-020-75172-9

Fast, A., Lal, A., Durkin, A. F., Zachary, C. B., Ganesan, A. K., & Balu, M. (2020). FLAME: Macroscopic imaging with microscopic resolution. Optical biopsy of human skin. bioRxiv, 2020.2001.2031.927590. doi: 10.1101/2020.01.31.927590. http://biorxiv.org/content/early/2020/02/02/2020.01.31.927590.abstract

Feese, B. D., Pafundo, D. E., Schmehl, M. N., & Kuhlman, S. J. (2017). Binocular deprivation induces both age-dependent and age-independent forms of plasticity in parvalbumin inhibitory neuron visual response properties. Journal of Neurophysiology, 119(2), 738-751. doi: 10.1152/jn.00386.2017. https://doi.org/10.1152/jn.00386.2017

Fleming, W., Jewell, S., Engelhard, B., Witten, D. M., & Witten, I. B. (2021). Inferring spikes from calcium imaging in dopamine neurons. PLOS ONE, 16(6), e0252345. doi: 10.1371/journal.pone.0252345. https://doi.org/10.1371/journal.pone.0252345

Gaffield, M. A., Amat, S. B., Bito, H., & Christie, J. M. (2016). Chronic imaging of movement-related Purkinje cell calcium activity in awake behaving mice. Journal of Neurophysiology, 115(1), 413-422. doi: 10.1152/jn.00834.2015. https://journals.physiology.org/doi/abs/10.1152/jn.00834.2015

Gaffield, M. A., Bonnan, A., & Christie, J. M. (2019). Conversion of Graded Presynaptic Climbing Fiber Activity into Graded Postsynaptic Ca2+ Signals by Purkinje Cell Dendrites. Neuron, 102(4), 762-769.e764. doi: https://doi.org/10.1016/j.neuron.2019.03.010. https://www.sciencedirect.com/science/article/pii/S089662731930217X

Gaffield, M. A., & Christie, J. M. (2017). Movement Rate Is Encoded and Influenced by Widespread, Coherent Activity of Cerebellar Molecular Layer Interneurons. The Journal of Neuroscience, 37(18), 4751. doi: 10.1523/jneurosci.0534-17.2017. http://www.jneurosci.org/content/37/18/4751.abstract

Gaffield, M. A., Rowan, M. J. M., Amat, S. B., Hirai, H., & Christie, J. M. (2018). Inhibition gates supralinear Ca2+ signaling in Purkinje cell dendrites during practiced movements. eLife, 7, e36246. doi: 10.7554/eLife.36246. https://doi.org/10.7554/eLife.36246

Gala, R., Lebrecht, D., Sahlender, D. A., Jorstad, A., Knott, G., Holtmaat, A., & Stepanyants, A. (2017). Computer assisted detection of axonal bouton structural plasticity in in vivo time-lapse images. eLife, 6, e29315. doi: 10.7554/eLife.29315. https://doi.org/10.7554/eLife.29315

Gan, M., He, C., Liu, H., Zhuang, Z., Qiu, P., & Wang, K. (2019). Air-core fiber or photonic-crystal rod, which is more suitable for energetic femtosecond pulse generation and three-photon microscopy at the 1700-nm window? [https://doi.org/10.1002/jbio.201900069]. Journal of Biophotonics, 12(10), e201900069. doi: https://doi.org/10.1002/jbio.201900069. https://doi.org/10.1002/jbio.201900069

Gauthier, J. L., & Tank, D. W. (2018). A Dedicated Population for Reward Coding in the Hippocampus. Neuron, 99(1), 179-193.e177. doi: https://doi.org/10.1016/j.neuron.2018.06.008. https://www.sciencedirect.com/science/article/pii/S0896627318304768

Godenzini, L., Alwis, D., Guzulaitis, R., Honnuraiah, S., Stuart, G. J., & Palmer, L. M. (2021). Auditory input enhances somatosensory encoding and tactile goal-directed behavior. Nature Communications, 12(1), 4509. doi: 10.1038/s41467-021-24754-w. https://doi.org/10.1038/s41467-021-24754-w

Groschner, L. N., Chan Wah Hak, L., Bogacz, R., DasGupta, S., & Miesenböck, G. (2018). Dendritic Integration of Sensory Evidence in Perceptual Decision-Making. Cell, 173(4), 894-905.e813. doi: https://doi.org/10.1016/j.cell.2018.03.075. https://www.sciencedirect.com/science/article/pii/S0092867418304471

Gu, Y., Lewallen, S., Kinkhabwala, A. A., Domnisoru, C., Yoon, K., Gauthier, J. L., . . . Tank, D. W. (2018). A Map-like Micro-Organization of Grid Cells in the Medial Entorhinal Cortex. Cell, 175(3), 736-750.e730. doi: https://doi.org/10.1016/j.cell.2018.08.066. https://www.sciencedirect.com/science/article/pii/S009286741831167X

Hall, C. E., McNamara, J. O., & Yasuda, R. (2019). Analysis of TrkB Receptor Activity Using FRET Sensors. In C. B. Duarte & E. Tongiorgi (Eds.), Brain-Derived Neurotrophic Factor (BDNF) (pp. 149-157). New York, NY: Springer New York.

Hamodi, A. S., Martinez Sabino, A., Fitzgerald, N. D., Moschou, D., & Crair, M. C. (2020). Transverse sinus injections drive robust whole-brain expression of transgenes. eLife, 9, e53639. doi: 10.7554/eLife.53639. https://doi.org/10.7554/eLife.53639

Hamodi, A. S., Sabino, A. M., Fitzgerald, N. D., & Crair, M. C. (2019). Transverse sinus injections: A novel method for whole-brain vector-driven gene delivery. bioRxiv, 579730. doi: 10.1101/579730. http://biorxiv.org/content/early/2019/03/16/579730.abstract

Har-Gil, H., Golgher, L., Israel, S., Kain, D., Cheshnovsky, O., Parnas, M., & Blinder, P. (2018). PySight: plug and play photon counting for fast continuous volumetric intravital microscopy. Optica, 5(9), 1104-1112. doi: 10.1364/optica.5.001104. http://www.osapublishing.org/optica/abstract.cfm?URI=optica-5-9-1104

Hattori, R., Danskin, B., Babic, Z., Mlynaryk, N., & Komiyama, T. (2019). Area-Specificity and Plasticity of History-Dependent Value Coding During Learning. Cell, 177(7), 1858-1872.e1815. doi: https://doi.org/10.1016/j.cell.2019.04.027. https://www.sciencedirect.com/science/article/pii/S0092867419304465

He, C., Deng, X., Pan, Y., Tong, S., Kang, J., Li, J., . . . Wang, K. (2020). 3-photon microscopy of myelin in mouse digital skin excited at the 1700-nm window. [https://doi.org/10.1002/jbio.202000321]. Journal of Biophotonics, 13(12), e202000321. doi: https://doi.org/10.1002/jbio.202000321. https://doi.org/10.1002/jbio.202000321

He, C., Gan, M., Deng, X., Liu, H., Qiu, P., & Wang, K. (2019). 3-photon fluorescence imaging of sulforhodamine B-labeled elastic fibers in the mouse skin in vivo. [https://doi.org/10.1002/jbio.201900185]. Journal of Biophotonics, 12(11), e201900185. doi: https://doi.org/10.1002/jbio.201900185. https://doi.org/10.1002/jbio.201900185

He, J., Du, Y., Zhuang, Z., Wen, W., Liu, H., Wang, K., & Qiu, P. (2018). Wavelength Separation Tunable 2-Color Soliton Generation and Its Application to 2-Color Fluorescence Multiphoton Microscopy. Journal of Lightwave Technology, 36(16), 3249-3253. doi: 10.1109/jlt.2018.2833280. 

Henschke, J. U., Dylda, E., Katsanevaki, D., Dupuy, N., Currie, S. P., Amvrosiadis, T., . . . Rochefort, N. L. (2020). Reward Association Enhances Stimulus-Specific Representations in Primary Visual Cortex. Current Biology, 30(10), 1866-1880.e1865. doi: https://doi.org/10.1016/j.cub.2020.03.018. https://www.sciencedirect.com/science/article/pii/S0960982220303560

Henschke, J. U., Price, A. T., & Pakan, J. M. P. (2021). Enhanced modulation of cell-type specific neuronal responses in mouse dorsal auditory field during locomotion. Cell Calcium, 96, 102390. doi: https://doi.org/10.1016/j.ceca.2021.102390. https://www.sciencedirect.com/science/article/pii/S0143416021000440

Herdzik, K. P., Bourdakos, K. N., Johnson, P. B., Lister, A. P., Pitera, A. P., Guo, C.-y., . . . Mahajan, S. (2020). Multimodal spectral focusing CARS and SFG microscopy with a tailored coherent continuum from a microstructured fiber. Applied Physics B, 126(5), 84. doi: 10.1007/s00340-020-7406-6. https://doi.org/10.1007/s00340-020-7406-6

Hige, T., Aso, Y., Modi, Mehrab N., Rubin, Gerald M., & Turner, Glenn C. (2015). Heterosynaptic Plasticity Underlies Aversive Olfactory Learning in Drosophila. Neuron, 88(5), 985-998. doi: https://doi.org/10.1016/j.neuron.2015.11.003. https://www.sciencedirect.com/science/article/pii/S0896627315009824

Inoue, M., Takeuchi, A., Manita, S., Horigane, S.-i., Sakamoto, M., Kawakami, R., . . . Bito, H. (2019). Rational Engineering of XCaMPs, a Multicolor GECI Suite for In Vivo Imaging of Complex Brain Circuit Dynamics. Cell, 177(5), 1346-1360.e1324. doi: https://doi.org/10.1016/j.cell.2019.04.007. https://www.sciencedirect.com/science/article/pii/S0092867419303939

Jackman, S. L., Chen, C. H., Chettih, S. N., Neufeld, S. Q., Drew, I. R., Agba, C. K., . . . Regehr, W. G. (2018). Silk Fibroin Films Facilitate Single-Step Targeted Expression of Optogenetic Proteins. Cell Reports, 22(12), 3351-3361. doi: https://doi.org/10.1016/j.celrep.2018.02.081. https://www.sciencedirect.com/science/article/pii/S2211124718302912

Jeanne, J. M., Fişek, M., & Wilson, R. I. (2018). The Organization of Projections from Olfactory Glomeruli onto Higher-Order Neurons. Neuron, 98(6), 1198-1213.e1196. doi: https://doi.org/10.1016/j.neuron.2018.05.011. https://www.sciencedirect.com/science/article/pii/S0896627318303830

Kafashan, M., Jaffe, A. W., Chettih, S. N., Nogueira, R., Arandia-Romero, I., Harvey, C. D., . . . Drugowitsch, J. (2021). Scaling of sensory information in large neural populations shows signatures of information-limiting correlations. Nature Communications, 12(1), 473. doi: 10.1038/s41467-020-20722-y. https://doi.org/10.1038/s41467-020-20722-y

Katlowitz, K. A., Picardo, M. A., & Long, M. A. (2018). Stable Sequential Activity Underlying the Maintenance of a Precisely Executed Skilled Behavior. Neuron, 98(6), 1133-1140.e1133. doi: https://doi.org/10.1016/j.neuron.2018.05.017. https://www.sciencedirect.com/science/article/pii/S089662731830415X

Kato, H. K., Asinof, S. K., & Isaacson, J. S. (2017). Network-Level Control of Frequency Tuning in Auditory Cortex. Neuron, 95(2), 412-423.e414. doi: https://doi.org/10.1016/j.neuron.2017.06.019. https://www.sciencedirect.com/science/article/pii/S0896627317305172

Kato, Hiroyuki K., Gillet, Shea N., & Isaacson, Jeffry S. (2015). Flexible Sensory Representations in Auditory Cortex Driven by Behavioral Relevance. Neuron, 88(5), 1027-1039. doi: https://doi.org/10.1016/j.neuron.2015.10.024. https://www.sciencedirect.com/science/article/pii/S0896627315009186

Kerlin, A., Mohar, B., Flickinger, D., MacLennan, B. J., Dean, M. B., Davis, C., . . . Svoboda, K. (2019). Functional clustering of dendritic activity during decision-making. eLife, 8, e46966. doi: 10.7554/eLife.46966. https://doi.org/10.7554/eLife.46966

Kim, H., Homann, J., Tank, D. W., & Berry, M. J. (2019). A Long Timescale Stimulus History Effect in the Primary Visual Cortex. bioRxiv, 585539. doi: 10.1101/585539. http://biorxiv.org/content/early/2019/03/21/585539.abstract

Kim, M.-H., Znamenskiy, P., Iacaruso, M. F., & Mrsic-Flogel, T. D. (2018). Segregated Subnetworks of Intracortical Projection Neurons in Primary Visual Cortex. Neuron, 100(6), 1313-1321.e1316. doi: https://doi.org/10.1016/j.neuron.2018.10.023. https://www.sciencedirect.com/science/article/pii/S0896627318309115

Kinkhabwala, A. A., Gu, Y., Aronov, D., & Tank, D. W. (2020). Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality. eLife, 9, e43140. doi: 10.7554/eLife.43140. https://doi.org/10.7554/eLife.43140

Klapoetke, N. C., Nern, A., Peek, M. Y., Rogers, E. M., Breads, P., Rubin, G. M., . . . Card, G. M. (2017). Ultra-selective looming detection from radial motion opponency. Nature, 551(7679), 237-241. doi: 10.1038/nature24626. https://doi.org/10.1038/nature24626

Knoblich, U., Huang, L., Zeng, H., & Li, L. (2019). Neuronal cell-subtype specificity of neural synchronization in mouse primary visual cortex. Nature Communications, 10(1), 2533. doi: 10.1038/s41467-019-10498-1. https://doi.org/10.1038/s41467-019-10498-1

Lee, K.-S., Huang, X., & Fitzpatrick, D. (2016). Topology of ON and OFF inputs in visual cortex enables an invariant columnar architecture. Nature, 533(7601), 90-94. doi: 10.1038/nature17941. https://doi.org/10.1038/nature17941

LeMessurier, A. M., Laboy-Juárez, K. J., McClain, K., Chen, S., Nguyen, T., & Feldman, D. E. (2019). Enrichment drives emergence of functional columns and improves sensory coding in the whisker map in L2/3 of mouse S1. eLife, 8, e46321. doi: 10.7554/eLife.46321. https://doi.org/10.7554/eLife.46321

Lerman, G. M., Little, J. P., Gill, J. V., Rinberg, D., & Shoham, S. (2019). Real-Time In Situ Holographic Optogenetics Confocally Unraveled Sculpting Microscopy. [https://doi.org/10.1002/lpor.201900144]. Laser & Photonics Reviews, 13(9), 1900144. doi: https://doi.org/10.1002/lpor.201900144. https://doi.org/10.1002/lpor.201900144

Light, S. E. W., & Jontes, J. D. (2019). Multiplane Calcium Imaging Reveals Disrupted Development of Network Topology in Zebrafish pcdh19 Mutants. eNeuro, 6(3), ENEURO.0420-0418.2019. doi: 10.1523/eneuro.0420-18.2019. https://pubmed.ncbi.nlm.nih.gov/31061071

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525332/

Lin, Q., Manley, J., Helmreich, M., Schlumm, F., Li, J. M., Robson, D. N., . . . Vaziri, A. (2020). Cerebellar Neurodynamics Predict Decision Timing and Outcome on the Single-Trial Level. Cell, 180(3), 536-551.e517. doi: https://doi.org/10.1016/j.cell.2019.12.018. https://www.sciencedirect.com/science/article/pii/S0092867419313807

Liu, H., Du, Y., Peng, X., Zhou, X., Qiu, P., & Wang, K. (2017). Sealing of Immersion Deuterium Dioxide and Its Application to Signal Maintenance for Ex-Vivo and In-Vivo Multiphoton Microscopy Excited at the 1700-nm Window. IEEE Photonics Journal, 9(5), 1-8. doi: 10.1109/jphot.2017.2737012. 

Liu, H., Zhuang, Z., He, J., Tong, S., He, C., Deng, X., . . . Wang, K. (2019). High-energy polarized soliton synthesis and its application to deep-brain 3-photon microscopy in vivo. Optics Express, 27(11), 15309-15317. doi: 10.1364/oe.27.015309. http://www.opticsexpress.org/abstract.cfm?URI=oe-27-11-15309

Liu, R., Ball, N., Brockill, J., Kuan, L., Millman, D., White, C., . . . Saggau, P. (2018). Multi-plane Imaging of Neural Activity From the Mammalian Brain Using a Fast-switching Liquid Crystal Spatial Light Modulator. bioRxiv, 506618. doi: 10.1101/506618. http://biorxiv.org/content/early/2018/12/30/506618.abstract

Long, B., Li, L., Knoblich, U., Zeng, H., & Peng, H. (2015). 3D Image-Guided Automatic Pipette Positioning for Single Cell Experiments in vivo. Scientific Reports, 5(1), 18426. doi: 10.1038/srep18426. https://doi.org/10.1038/srep18426

Lur, G., Vinck, Martin A., Tang, L., Cardin, Jessica A., & Higley, Michael J. (2016). Projection-Specific Visual Feature Encoding by Layer 5 Cortical Subnetworks. Cell Reports, 14(11), 2538-2545. doi: https://doi.org/10.1016/j.celrep.2016.02.050. https://www.sciencedirect.com/science/article/pii/S2211124716301711

Ma, L., Jongbloets, B. C., Xiong, W.-H., Melander, J. B., Qin, M., Lameyer, T. J., . . . Zhong, H. (2018). A Highly Sensitive A-Kinase Activity Reporter for Imaging Neuromodulatory Events in Awake Mice. Neuron, 99(4), 665-679.e665. doi: https://doi.org/10.1016/j.neuron.2018.07.020. https://www.sciencedirect.com/science/article/pii/S0896627318305944

Ma, Z., Liu, H., Komiyama, T., & Wessel, R. (2020). Stability of motor cortex network states during learning-associated neural reorganizations. Journal of Neurophysiology, 124(5), 1327-1342. doi: 10.1152/jn.00061.2020. https://journals.physiology.org/doi/abs/10.1152/jn.00061.2020

Makino, H., Ren, C., Liu, H., Kim, A. N., Kondapaneni, N., Liu, X., . . . Komiyama, T. (2017). Transformation of Cortex-wide Emergent Properties during Motor Learning. Neuron, 94(4), 880-890.e888. doi: https://doi.org/10.1016/j.neuron.2017.04.015. https://www.sciencedirect.com/science/article/pii/S0896627317303410

Maltese, M., March, J. R., Bashaw, A. G., & Tritsch, N. X. (2019). Dopamine modulates the size of striatal projection neuron ensembles. bioRxiv, 865006. doi: 10.1101/865006. http://biorxiv.org/content/early/2019/12/05/865006.abstract

Maltese, M., March, J. R., Bashaw, A. G., & Tritsch, N. X. (2021). Dopamine differentially modulates the size of projection neuron ensembles in the intact and dopamine-depleted striatum. eLife, 10, e68041. doi: 10.7554/eLife.68041. https://doi.org/10.7554/eLife.68041

Mamiya, A., Gurung, P., & Tuthill, J. C. (2018). Neural Coding of Leg Proprioception in Drosophila. Neuron, 100(3), 636-650.e636. doi: https://doi.org/10.1016/j.neuron.2018.09.009. https://www.sciencedirect.com/science/article/pii/S0896627318307827

Marques, T., Summers, M. T., Fioreze, G., Fridman, M., Dias, R. F., Feller, M. B., & Petreanu, L. (2018). A Role for Mouse Primary Visual Cortex in Motion Perception. Current Biology, 28(11), 1703-1713.e1706. doi: https://doi.org/10.1016/j.cub.2018.04.012. https://www.sciencedirect.com/science/article/pii/S0960982218304408

Mateo, C., Knutsen, P. M., Tsai, P. S., Shih, A. Y., & Kleinfeld, D. (2017). Entrainment of Arteriole Vasomotor Fluctuations by Neural Activity Is a Basis of Blood-Oxygenation-Level-Dependent “Resting-State” Connectivity. Neuron, 96(4), 936-948.e933. doi: https://doi.org/10.1016/j.neuron.2017.10.012. https://www.sciencedirect.com/science/article/pii/S0896627317309807

Mayrhofer, J. M., El-Boustani, S., Foustoukos, G., Auffret, M., Tamura, K., & Petersen, C. C. H. (2019). Distinct Contributions of Whisker Sensory Cortex and Tongue-Jaw Motor Cortex in a Goal-Directed Sensorimotor Transformation. Neuron, 103(6), 1034-1043.e1035. doi: https://doi.org/10.1016/j.neuron.2019.07.008. https://www.sciencedirect.com/science/article/pii/S0896627319306348

Meier, M., & Borst, A. (2019). Extreme Compartmentalization in a Drosophila Amacrine Cell. Current Biology, 29(9), 1545-1550.e1542. doi: https://doi.org/10.1016/j.cub.2019.03.070. https://www.sciencedirect.com/science/article/pii/S0960982219303987

Meshulam, L., Gauthier, J. L., Brody, C. D., Tank, D. W., & Bialek, W. (2017). Collective Behavior of Place and Non-place Neurons in the Hippocampal Network. Neuron, 96(5), 1178-1191.e1174. doi: https://doi.org/10.1016/j.neuron.2017.10.027. https://www.sciencedirect.com/science/article/pii/S0896627317309960

Mikael, T. E., David, R., Nancy, H.-D., Marco, W., Christoph, H., Rainer, A. L., . . . Marco, A. (2020). Surgical microscope with integrated fluorescence lifetime imaging for 5-aminolevulinic acid fluorescence-guided neurosurgery. Journal of Biomedical Optics, 25(7), 1-7. doi: 10.1117/1.jbo.25.7.071202. https://doi.org/10.1117/1.JBO.25.7.071202

Minamisawa, G., Kwon, S. E., Chevée, M., Brown, S. P., & O’Connor, D. H. (2018). A Non-canonical Feedback Circuit for Rapid Interactions between Somatosensory Cortices. Cell Reports, 23(9), 2718-2731.e2716. doi: https://doi.org/10.1016/j.celrep.2018.04.115. https://www.sciencedirect.com/science/article/pii/S2211124718307150

Minderer, M., Brown, K. D., & Harvey, C. D. (2019). The Spatial Structure of Neural Encoding in Mouse Posterior Cortex during Navigation. Neuron, 102(1), 232-248.e211. doi: https://doi.org/10.1016/j.neuron.2019.01.029. https://www.sciencedirect.com/science/article/pii/S089662731930056X

Mishra, A., Salari, A., Berigan, B. R., Miguel, K. C., Amirshenava, M., Robinson, A., . . . Zars, T. (2018). The Drosophila Gr28bD product is a non-specific cation channel that can be used as a novel thermogenetic tool. Scientific Reports, 8(1), 901. doi: 10.1038/s41598-017-19065-4. https://doi.org/10.1038/s41598-017-19065-4

Mitani, A., Dong, M., & Komiyama, T. (2018). Brain-Computer Interface with Inhibitory Neurons Reveals Subtype-Specific Strategies. Current Biology, 28(1), 77-83.e74. doi: https://doi.org/10.1016/j.cub.2017.11.035. https://www.sciencedirect.com/science/article/pii/S0960982217315178

Mitani, A., & Komiyama, T. (2018). Real-Time Processing of Two-Photon Calcium Imaging Data Including Lateral Motion Artifact Correction. [Methods]. Frontiers in Neuroinformatics, 12(98). doi: 10.3389/fninf.2018.00098. https://www.frontiersin.org/article/10.3389/fninf.2018.00098

Moore, A. K., Weible, A. P., Balmer, T. S., Trussell, L. O., & Wehr, M. (2018). Rapid Rebalancing of Excitation and Inhibition by Cortical Circuitry. Neuron, 97(6), 1341-1355.e1346. doi: https://doi.org/10.1016/j.neuron.2018.01.045. https://www.sciencedirect.com/science/article/pii/S0896627318300709

Morcos, A. S., & Harvey, C. D. (2016). History-dependent variability in population dynamics during evidence accumulation in cortex. Nature Neuroscience, 19(12), 1672-1681. doi: 10.1038/nn.4403. https://doi.org/10.1038/nn.4403

Moura, C. C., Bourdakos, K. N., Tare, R. S., Oreffo, R. O. C., & Mahajan, S. (2019). Live-imaging of Bioengineered Cartilage Tissue using Multimodal Non-linear Molecular Imaging. Scientific Reports, 9(1), 5561. doi: 10.1038/s41598-019-41466-w. https://doi.org/10.1038/s41598-019-41466-w

Murphy-Royal, C., Johnston, A. D., Boyce, A. K. J., Diaz-Castro, B., Institoris, A., Peringod, G., . . . Gordon, G. R. (2020). Stress gates an astrocytic energy reservoir to impair synaptic plasticity. Nature Communications, 11(1), 2014. doi: 10.1038/s41467-020-15778-9. https://doi.org/10.1038/s41467-020-15778-9

Oda, K., Vierock, J., Oishi, S., Rodriguez-Rozada, S., Taniguchi, R., Yamashita, K., . . . Nureki, O. (2018). Crystal structure of the red light-activated channelrhodopsin Chrimson. Nature Communications, 9(1), 3949. doi: 10.1038/s41467-018-06421-9. https://doi.org/10.1038/s41467-018-06421-9

Oppermann, J., Fischer, P., Silapetere, A., Liepe, B., Rodriguez-Rozada, S., Flores-Uribe, J., . . . Wietek, J. (2019). MerMAIDs: a family of metagenomically discovered marine anion-conducting and intensely desensitizing channelrhodopsins. Nature Communications, 10(1), 3315. doi: 10.1038/s41467-019-11322-6. https://doi.org/10.1038/s41467-019-11322-6

Orlova, N., Tsyboulski, D., Najafi, F., Seid, S., Kivikas, S., Kato, I., . . . Saggau, P. (2020). Multiplane Mesoscope reveals distinct cortical interactions following expectation violations. bioRxiv, 2020.2010.2006.328294. doi: 10.1101/2020.10.06.328294. http://biorxiv.org/content/early/2020/10/10/2020.10.06.328294.abstract

Parker, J. G., Marshall, J. D., Ahanonu, B., Wu, Y.-W., Kim, T. H., Grewe, B. F., . . . Schnitzer, M. J. (2018). Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature, 557(7704), 177-182. doi: 10.1038/s41586-018-0090-6. https://doi.org/10.1038/s41586-018-0090-6

Pearre, B. W., Michas, C., Tsang, J.-M., Gardner, T. J., & Otchy, T. M. (2019). Fast micron-scale 3D printing with a resonant-scanning two-photon microscope. Additive Manufacturing, 30, 100887. doi: https://doi.org/10.1016/j.addma.2019.100887. https://www.sciencedirect.com/science/article/pii/S2214860418303944

Peron, S., Pancholi, R., Voelcker, B., Wittenbach, J. D., Ólafsdóttir, H. F., Freeman, J., & Svoboda, K. (2020). Recurrent interactions in local cortical circuits. Nature, 579(7798), 256-259. doi: 10.1038/s41586-020-2062-x. https://doi.org/10.1038/s41586-020-2062-x

Pichler, P., & Lagnado, L. (2019). The Transfer Characteristics of Hair Cells Encoding Mechanical Stimuli in the Lateral Line of Zebrafish. The Journal of Neuroscience, 39(1), 112. doi: 10.1523/jneurosci.1472-18.2018. http://www.jneurosci.org/content/39/1/112.abstract

Pisanello, M., Pisano, F., Hyun, M., Maglie, E., Balena, A., De Vittorio, M., . . . Pisanello, F. (2019). The Three-Dimensional Signal Collection Field for Fiber Photometry in Brain Tissue. [Original Research]. Frontiers in Neuroscience, 13(82). doi: 10.3389/fnins.2019.00082. https://www.frontiersin.org/article/10.3389/fnins.2019.00082

Pisano, F., Pisanello, M., Maglie, E., Balena, A., Sileo, L., Spagnolo, B., . . . Pisanello, F. (2018). Multipoint and large volume fiber photometry with a single tapered optical fiber implant. bioRxiv, 455766. doi: 10.1101/455766. http://biorxiv.org/content/early/2018/10/29/455766.abstract

Podgorski, K., & Ranganathan, G. (2016). Brain heating induced by near-infrared lasers during multiphoton microscopy. Journal of Neurophysiology, 116(3), 1012-1023. doi: 10.1152/jn.00275.2016. https://doi.org/10.1152/jn.00275.2016

Poleg-Polsky, A., Ding, H., & Diamond, J. S. (2018). Functional Compartmentalization within Starburst Amacrine Cell Dendrites in the Retina. Cell Reports, 22(11), 2898-2908. doi: https://doi.org/10.1016/j.celrep.2018.02.064. https://www.sciencedirect.com/science/article/pii/S2211124718302584

Pottackal, J., Singer, J. H., & Demb, J. B. (2020). Receptoral Mechanisms for Fast Cholinergic Transmission in Direction-Selective Retinal Circuitry. Frontiers in cellular neuroscience, 14, 604163-604163. doi: 10.3389/fncel.2020.604163. https://pubmed.ncbi.nlm.nih.gov/33324168

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726240/

Pujala, A., & Koyama, M. (2019). Chronology-based architecture of descending circuits that underlie the development of locomotor repertoire after birth. eLife, 8, e42135. doi: 10.7554/eLife.42135. https://doi.org/10.7554/eLife.42135

Ramachandra, V., Pawlak, V., Wallace, D. J., & Kerr, J. N. D. (2020). Impact of visual callosal pathway is dependent upon ipsilateral thalamus. Nature Communications, 11(1), 1889. doi: 10.1038/s41467-020-15672-4. https://doi.org/10.1038/s41467-020-15672-4

Reinhard, K., Li, C., Do, Q., Burke, E. G., Heynderickx, S., & Farrow, K. (2019). A projection specific logic to sampling visual inputs in mouse superior colliculus. eLife, 8, e50697. doi: 10.7554/eLife.50697. https://doi.org/10.7554/eLife.50697

Ruiz-Uribe, N. E., Ahn, S. J., & Schaffer, C. B. (2019, 2019/04/14). Label Free Imaging of Cortical Blood Vessels Using Third Harmonic Generation (THG) Microscopy. Paper presented at the Biophotonics Congress: Optics in the Life Sciences Congress 2019 (BODA,BRAIN,NTM,OMA,OMP), Tucson, Arizona.

Samonds, J. M., Feese, B. D., Lee, T. S., & Kuhlman, S. J. (2017). Nonuniform surround suppression of visual responses in mouse V1. Journal of Neurophysiology, 118(6), 3282-3292. doi: 10.1152/jn.00172.2017. https://doi.org/10.1152/jn.00172.2017

Schiavo, J. K., Valtcheva, S., Bair-Marshall, C., Song, S. C., Martin, K. A., & Froemke, R. C. (2020). Innate sensitivity and plastic mechanisms in auditory cortex for reliable maternal behavior. bioRxiv, 2020.2003.2011.987941. doi: 10.1101/2020.03.11.987941. http://biorxiv.org/content/early/2020/03/12/2020.03.11.987941.abstract

Schiavo, J. K., Valtcheva, S., Bair-Marshall, C. J., Song, S. C., Martin, K. A., & Froemke, R. C. (2020). Innate and plastic mechanisms for maternal behaviour in auditory cortex. Nature, 587(7834), 426-431. doi: 10.1038/s41586-020-2807-6. https://pubmed.ncbi.nlm.nih.gov/33029014

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677212/

Scholl, B., Thomas, C. I., Ryan, M. A., Kamasawa, N., & Fitzpatrick, D. (2021). Cortical response selectivity derives from strength in numbers of synapses. Nature, 590(7844), 111-114. doi: 10.1038/s41586-020-03044-3. https://doi.org/10.1038/s41586-020-03044-3

Scholl, B., Wilson, D. E., & Fitzpatrick, D. (2017). Local Order within Global Disorder: Synaptic Architecture of Visual Space. Neuron, 96(5), 1127-1138.e1124. doi: https://doi.org/10.1016/j.neuron.2017.10.017. https://www.sciencedirect.com/science/article/pii/S0896627317309856

Scholl, B., Wilson, D. E., Jaepel, J., & Fitzpatrick, D. (2019). Functional Logic of Layer 2/3 Inhibitory Connectivity in the Ferret Visual Cortex. Neuron, 104(3), 451-457.e453. doi: https://doi.org/10.1016/j.neuron.2019.08.004. https://www.sciencedirect.com/science/article/pii/S0896627319306889

Scott, B. B., Constantinople, C. M., Akrami, A., Hanks, T. D., Brody, C. D., & Tank, D. W. (2017). Fronto-parietal Cortical Circuits Encode Accumulated Evidence with a Diversity of Timescales. Neuron, 95(2), 385-398.e385. doi: https://doi.org/10.1016/j.neuron.2017.06.013. https://www.sciencedirect.com/science/article/pii/S0896627317305111

Shen, J., Blute, T. A., Liberti, W. A., Yen, W., Liberti, D. C., Kotten, D. N., . . . Gardner, T. J. (2017). Songbird organotypic culture as an <em>in vitro</em> model for interrogating sparse sequencing networks. bioRxiv, 164228. doi: 10.1101/164228. http://biorxiv.org/content/early/2017/07/17/164228.abstract

Smith, G. B., & Fitzpatrick, D. (2016). Viral Injection and Cranial Window Implantation for In Vivo Two-Photon Imaging. In S. D. Schwartzbach, O. Skalli & T. Schikorski (Eds.), High-Resolution Imaging of Cellular Proteins: Methods and Protocols (pp. 171-185). New York, NY: Springer New York.

Srinivasan, R., Huang, B. S., Venugopal, S., Johnston, A. D., Chai, H., Zeng, H., . . . Khakh, B. S. (2015). Ca2+ signaling in astrocytes from Ip3r2−/− mice in brain slices and during startle responses in vivo. Nature Neuroscience, 18(5), 708-717. doi: 10.1038/nn.4001. https://doi.org/10.1038/nn.4001

Stein, I. S., Hill, T. C., Oh, W. C., Parajuli, L. K., & Zito, K. (2019). Two-Photon Glutamate Uncaging to Study Structural and Functional Plasticity of Dendritic Spines. In E. Hartveit (Ed.), Multiphoton Microscopy (pp. 65-85). New York, NY: Springer New York.

Takahashi, N., Moberg, S., Zolnik, T. A., Catanese, J., Sachdev, R. N. S., Larkum, M. E., & Jaeger, D. (2021). Thalamic input to motor cortex facilitates goal-directed action initiation. Current Biology. doi: https://doi.org/10.1016/j.cub.2021.06.089. https://www.sciencedirect.com/science/article/pii/S0960982221009180

Takasaki, K., Abbasi-Asl, R., & Waters, J. (2020). Superficial Bound of the Depth Limit of Two-Photon Imaging in Mouse Brain. eNeuro, 7(1), ENEURO.0255-0219.2019. doi: 10.1523/eneuro.0255-19.2019. https://pubmed.ncbi.nlm.nih.gov/31907211

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984806/

Tan, H. L., Roth, R. H., Graves, A. R., Cudmore, R. H., & Huganir, R. L. (2020). Lamina-specific AMPA receptor dynamics following visual deprivation in vivo. eLife, 9, e52420. doi: 10.7554/eLife.52420. https://doi.org/10.7554/eLife.52420

Tang, A. D., Bennett, W., Bindoff, A. D., Collins, J., Garry, M. I., Summers, J. J., . . . Canty, A. J. (2021). Low intensity repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex. bioRxiv, 2021.2003.2010.434706. doi: 10.1101/2021.03.10.434706. http://biorxiv.org/content/early/2021/03/11/2021.03.10.434706.abstract

Thomas, C. I., Ryan, M. A., Scholl, B., Guerrero-Given, D., Fitzpatrick, D., & Kamasawa, N. (2021). Targeting Functionally Characterized Synaptic Architecture Using Inherent Fiducials and 3D Correlative Microscopy. Microscopy and Microanalysis, 27(1), 156-169. doi: Doi: 10.1017/s1431927620024757. https://www.cambridge.org/core/article/targeting-functionally-characteri...

Tiriac, A., Smith, B. E., & Feller, M. B. (2018). Light Prior to Eye Opening Promotes Retinal Waves and Eye-Specific Segregation. Neuron, 100(5), 1059-1065.e1054. doi: https://doi.org/10.1016/j.neuron.2018.10.011. https://www.sciencedirect.com/science/article/pii/S0896627318308997

Tran, C. H. T., Peringod, G., & Gordon, G. R. (2018). Astrocytes Integrate Behavioral State and Vascular Signals during Functional Hyperemia. Neuron, 100(5), 1133-1148.e1133. doi: https://doi.org/10.1016/j.neuron.2018.09.045. https://www.sciencedirect.com/science/article/pii/S089662731830847X

Tran-Van-Minh, A., Rebola, N., Hoehne, A., & DiGregorio, D. A. (2019). Two-Photon Neurotransmitter Uncaging for the Study of Dendritic Integration. In E. Hartveit (Ed.), Multiphoton Microscopy (pp. 33-64). New York, NY: Springer New York.

Tsutsumi, S., Chadney, O., Yiu, T.-L., Bäumler, E., Faraggiana, L., Beau, M., & Häusser, M. (2020). Purkinje Cell Activity Determines the Timing of Sensory-Evoked Motor Initiation. Cell Reports, 33(12), 108537. doi: https://doi.org/10.1016/j.celrep.2020.108537. https://www.sciencedirect.com/science/article/pii/S2211124720315266

Tsutsumi, S., Hidaka, N., Isomura, Y., Matsuzaki, M., Sakimura, K., Kano, M., & Kitamura, K. (2019). Modular organization of cerebellar climbing fiber inputs during goal-directed behavior. eLife, 8, e47021. doi: 10.7554/eLife.47021. https://doi.org/10.7554/eLife.47021

Tyson, A. L., Rousseau, C. V., Niedworok, C. J., Keshavarzi, S., Tsitoura, C., Cossell, L., . . . Margrie, T. W. (2021). A deep learning algorithm for 3D cell detection in whole mouse brain image datasets. PLOS Computational Biology, 17(5), e1009074. doi: 10.1371/journal.pcbi.1009074. https://doi.org/10.1371/journal.pcbi.1009074

Vavladeli, A., Daigle, T., Zeng, H., Crochet, S., & Petersen, C. C. H. (2020). Projection-specific Activity of Layer 2/3 Neurons Imaged in Mouse Primary Somatosensory Barrel Cortex During a Whisker Detection Task. Function, 1(zqaa008). doi: 10.1093/function/zqaa008. https://doi.org/10.1093/function/zqaa008

Wagner, M. J., Kim, T. H., Kadmon, J., Nguyen, N. D., Ganguli, S., Schnitzer, M. J., & Luo, L. (2019). Shared Cortex-Cerebellum Dynamics in the Execution and Learning of a Motor Task. Cell, 177(3), 669-682.e624. doi: https://doi.org/10.1016/j.cell.2019.02.019. https://www.sciencedirect.com/science/article/pii/S0092867419301680

Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J., & Luo, L. (2017). Cerebellar granule cells encode the expectation of reward. Nature, 544(7648), 96-100. doi: 10.1038/nature21726. https://doi.org/10.1038/nature21726

Wang, C.-C., Moorhouse, S., Stain, C., Seymour, M., Green, E., Penfield, S., & Moger, J. (2018). In situ chemically specific mapping of agrochemical seed coatings using stimulated Raman scattering microscopy. [https://doi.org/10.1002/jbio.201800108]. Journal of Biophotonics, 11(11), e201800108. doi: https://doi.org/10.1002/jbio.201800108. https://doi.org/10.1002/jbio.201800108

Wang, K., Du, Y., Liu, H., Gan, M., Tong, S., Wen, W., . . . Qiu, P. (2019). Visualizing the “sandwich” structure of osteocytes in their native environment deep in bone in vivo. [https://doi.org/10.1002/jbio.201800360]. Journal of Biophotonics, 12(4), e201800360. doi: https://doi.org/10.1002/jbio.201800360. https://doi.org/10.1002/jbio.201800360

Wang, K., Pan, Y., Tong, S., Chen, X., Lu, Y., & Qiu, P. (2021). Deep-skin multiphoton microscopy in vivo excited at 1600 nm: A comparative investigation with silicone oil and deuterium dioxide immersion. [https://doi.org/10.1002/jbio.202100076]. Journal of Biophotonics, n/a(n/a), e202100076. doi: https://doi.org/10.1002/jbio.202100076. https://doi.org/10.1002/jbio.202100076

Wang, K., Wen, W., Liu, H., Du, Y., Zhuang, Z., & Qiu, P. (2018). Transmittance Characterization of Objective Lenses Covering all Four Near Infrared Optical Windows and its Application to Three-Photon Microscopy Excited at 1820 nm. IEEE Photonics Journal, 10(3), 1-7. doi: 10.1109/jphot.2018.2828435. 

Wang, K., Wen, W., Wang, Y., Wang, K., He, J., Wang, J., . . . Qiu, P. (2017). Order-of-magnitude multiphoton signal enhancement based on characterization of absorption spectra of immersion oils at the 1700-nm window. Optics Express, 25(6), 5909-5916. doi: 10.1364/oe.25.005909. http://www.opticsexpress.org/abstract.cfm?URI=oe-25-6-5909

Wang, Y., Wang, K., Wen, W., & Qiu, P. (2016). Comparison of Signal Detection of GaAsP and GaAs PMTs for Multiphoton Microscopy at the 1700-nm window. IEEE Photonics Journal, 8(3), 1-6. doi: 10.1109/jphot.2016.2570005. 

Weisenburger, S., Tejera, F., Demas, J., Chen, B., Manley, J., Sparks, F. T., . . . Vaziri, A. (2019). Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy. Cell, 177(4), 1050-1066.e1014. doi: https://doi.org/10.1016/j.cell.2019.03.011. https://www.sciencedirect.com/science/article/pii/S0092867419302739

Wilson, D. E., Scholl, B., & Fitzpatrick, D. (2018). Differential tuning of excitation and inhibition shapes direction selectivity in ferret visual cortex. Nature, 560(7716), 97-101. doi: 10.1038/s41586-018-0354-1. https://doi.org/10.1038/s41586-018-0354-1

Wilson, D. E., Smith, G. B., Jacob, A. L., Walker, T., Dimidschstein, J., Fishell, G., & Fitzpatrick, D. (2017). GABAergic Neurons in Ferret Visual Cortex Participate in Functionally Specific Networks. Neuron, 93(5), 1058-1065.e1054. doi: https://doi.org/10.1016/j.neuron.2017.02.035. https://www.sciencedirect.com/science/article/pii/S0896627317301435

Wilson, D. E., Whitney, D. E., Scholl, B., & Fitzpatrick, D. (2016). Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nature Neuroscience, 19(8), 1003-1009. doi: 10.1038/nn.4323. https://doi.org/10.1038/nn.4323

Xin, Y., Zhong, L., Zhang, Y., Zhou, T., Pan, J., & Xu, N.-l. (2019). Sensory-to-Category Transformation via Dynamic Reorganization of Ensemble Structures in Mouse Auditory Cortex. Neuron, 103(5), 909-921.e906. doi: https://doi.org/10.1016/j.neuron.2019.06.004. https://www.sciencedirect.com/science/article/pii/S089662731930532X

Yao, S., Yuan, P., Ouellette, B., Zhou, T., Mortrud, M., Balaram, P., . . . Cetin, A. (2020). RecV recombinase system for in vivo targeted optogenomic modifications of single cells or cell populations. Nature Methods, 17(4), 422-429. doi: 10.1038/s41592-020-0774-3. https://doi.org/10.1038/s41592-020-0774-3

Yap, K., Drakew, A., Smilovic, D., Rietsche, M., Paul, M. H., Vuksic, M., . . . Deller, T. (2020). The actin-modulating protein synaptopodin mediates long-term survival of dendritic spines. eLife, 9, e62944. doi: 10.7554/eLife.62944. https://doi.org/10.7554/eLife.62944

Ye, L., Orynbayev, M., Zhu, X., Lim, E. Y., Dereddi, R. R., Agarwal, A., . . . Paukert, M. (2020). Ethanol abolishes vigilance-dependent astroglia network activation in mice by inhibiting norepinephrine release. Nature Communications, 11(1), 6157. doi: 10.1038/s41467-020-19475-5. https://doi.org/10.1038/s41467-020-19475-5

Yu, C.-H., Stirman, J. N., Yu, Y., Hira, R., & Smith, S. L. (2020). Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry. bioRxiv, 2020.2009.2020.305508. doi: 10.1101/2020.09.20.305508. http://biorxiv.org/content/early/2020/09/20/2020.09.20.305508.abstract

Yuhao, Y., Niraj, S., & Fake, L. (2020). Monitoring uptake of palmitic acid by glioma cells using stimulated Raman scattering microscopy. Paper presented at the Proc.SPIE.

Zeiger, W. A., Marosi, M., Saggi, S., Noble, N., Samad, I., & Portera-Cailliau, C. (2020). Plasticity after cortical stroke involves potentiating responses of pre-existing circuits but not functional remapping to new circuits. bioRxiv, 2020.2011.2009.375840. doi: 10.1101/2020.11.09.375840. http://biorxiv.org/content/early/2020/11/10/2020.11.09.375840.abstract

Zeiger, W. A., Marosi, M., Saggi, S., Noble, N., Samad, I., & Portera-Cailliau, C. (2021). Barrel cortex plasticity after photothrombotic stroke involves potentiating responses of pre-existing circuits but not functional remapping to new circuits. Nature Communications, 12(1), 3972. doi: 10.1038/s41467-021-24211-8. https://doi.org/10.1038/s41467-021-24211-8

Zhao, L., Li, Z., Vong, J. S. L., Chen, X., Lai, H.-M., Yan, L. Y. C., . . . Ko, H. (2020). Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain. Nature Communications, 11(1), 4413. doi: 10.1038/s41467-020-18249-3. https://doi.org/10.1038/s41467-020-18249-3

Zhao, Y., Bushey, D., Zhao, Y., Schreiter, E. R., Harrison, D. J., Wong, A. M., & Campbell, R. E. (2018). Inverse-response Ca2+ indicators for optogenetic visualization of neuronal inhibition. Scientific Reports, 8(1), 11758. doi: 10.1038/s41598-018-30080-x. https://doi.org/10.1038/s41598-018-30080-x

Zhou, L., Nho, K., Haddad, M. G., Cherepacha, N., Tubeleviciute-Aydin, A., Tsai, A. P., . . . LeBlanc, A. C. (2021). Rare CASP6N73T variant associated with hippocampal volume exhibits decreased proteolytic activity, synaptic transmission defect, and neurodegeneration. Scientific Reports, 11(1), 12695. doi: 10.1038/s41598-021-91367-0. https://doi.org/10.1038/s41598-021-91367-0

Zhu, Y., & Gabbiani, F. (2016). Fine and distributed subcellular retinotopy of excitatory inputs to the dendritic tree of a collision-detecting neuron. Journal of Neurophysiology, 115(6), 3101-3112. doi: 10.1152/jn.00044.2016. https://doi.org/10.1152/jn.00044.2016

Zhu, Y., & Gabbiani, F. (2018). Combined Two-Photon Calcium Imaging and Single-Ommatidium Visual Stimulation to Study Fine-Scale Retinotopy in Insects. In R. V. Sillitoe (Ed.), Extracellular Recording Approaches (pp. 185-206). New York, NY: Springer New York.