Chow, Jonathan J., Kayla M. Pitts, Ansel Schoenbaum, Kauê M. Costa, Geoffrey Schoenbaum, and Yavin Shaham. “Different Effects of Peer Sex on Operant Responding for Social Interaction and Striatal Dopamine Activity.” Journal of Neuroscience 44, no. 10 (March 6, 2024). https://doi.org/10.1523/JNEUROSCI.1887-23.2024.
Privitera, Mattia, Lukas M von Ziegler, Amalia Floriou-Servou, Sian N Duss, Runzhong Zhang, Rebecca Waag, Sebastian Leimbacher, et al. “Noradrenaline Release from the Locus Coeruleus Shapes Stress-Induced Hippocampal Gene Expression.” Edited by Matthew N Hill and Kate M Wassum. eLife 12 (March 13, 2024): RP88559. https://doi.org/10.7554/eLife.88559.
Rupprecht, Peter, Sian N. Duss, Denise Becker, Christopher M. Lewis, Johannes Bohacek, and Fritjof Helmchen. “Centripetal Integration of Past Events in Hippocampal Astrocytes Regulated by Locus Coeruleus.” Nature Neuroscience, April 3, 2024, 1–13. https://doi.org/10.1038/s41593-024-01612-8.
“Suthard et al. - 2024 - Engram Reactivation Mimics Cellular Signatures of .Pdf.” Accessed April 12, 2024. https://www.cell.com/cell-reports/pdf/S2211-1247(24)00178-5.pdf.
Suthard, Rebecca L., Ryan A. Senne, Michelle D. Buzharsky, Anh H. Diep, Angela Y. Pyo, and Steve Ramirez. “Engram Reactivation Mimics Cellular Signatures of Fear.” Cell Reports 43, no. 3 (March 2024): 113850. https://doi.org/10.1016/j.celrep.2024.113850.
“Tang - 2023 - Fiber Photometry Acquisition v1.Pdf.” Accessed April 12, 2024. https://web.archive.org/web/20240118125614id_/https://www.protocols.io/view/fiber-photometry-acquisition-c6qgzdtw.pdf.
Tang, Jonathan. “Fiber Photometry Acquisition V1,” December 21, 2023. https://doi.org/10.17504/protocols.io.bp2l6xz5dlqe/v1.
Tang, Jonathan C. Y., Vitor Paixao, Filipe Carvalho, Artur Silva, Andreas Klaus, Joaquim Alves da Silva, and Rui M. Costa. “Dynamic Behaviour Restructuring Mediates Dopamine-Dependent Credit Assignment.” Nature 626, no. 7999 (February 2024): 583–92. https://doi.org/10.1038/s41586-023-06941-5.
Wholley, Kyla. “Neurochemical Signaling of Reward-Based Learning in Ventral Tegmental Area Dopamine Neurons.” Dissertations, Theses, and Capstone Projects, February 1, 2024. https://academicworks.cuny.edu/gc_etds/5689.
Yang, Dong, Yu Wang, Tianbo Qi, Xi Zhang, Leyao Shen, Jingrui Ma, Zhengyuan Pang, et al. “Phosphorylation of Pyruvate Dehydrogenase Inversely Associates with Neuronal Activity.” Neuron 112, no. 6 (March 2024): 959-971.e8. https://doi.org/10.1016/j.neuron.2023.12.015.
“Yang et al. - 2024 - Phosphorylation of Pyruvate Dehydrogenase Inversel.Pdf.” Accessed April 12, 2024. https://www.cell.com/neuron/pdf/S0896-6273(23)00974-1.pdf.
Samantha Washburn, et al. (2022). "Cerebellum Directly Modulates the Substantia Nigra Dopaminergic Activity." bioRxiv. https://doi.org/10.1101/2022.05.20.492532
Ekaterina Martianova, et al. (2021). "Coherent activity at three major lateral hypothalamic neural outputs controls the onset of motivated behavior responses." bioRxiv. https://doi.org/10.1101/2021.04.28.441785
Ronald Kim, et al. (2023). "Distinct subpopulations of ventral pallidal cholinergic projection neurons encode valence of olfactory stimuli." bioRxiv. https://doi.org/10.1101/2023.10.06.561261
Arthur Godino, et al. (2023). "Dopaminoceptive D1 and D2 neurons in ventral hippocampus arbitrate approach and avoidance in anxiety bioRxiv." https://doi.org/10.1101/2023.07.25.550554
Abdelmesih, B., R. Anderson, et al. (2023). "Urocortin-3 neurons in the perifornical area are critical mediators of chronic stress on female infant-directed behavior." Molecular Psychiatry 28(1): 483-496. https://doi.org/10.1038/s41380-022-01902-2
Allard, S. and M. G. H. Shuler (2023). "Cholinergic Reinforcement Signaling Is Impaired by Amyloidosis Prior to Its Synaptic Loss." Journal of Neuroscience 43(42): 6988-7005. https://doi.org/10.1523/JNEUROSCI.0967-23.2023
Barik, A., A. Sathyamurthy, et al. (2021). "A spinoparabrachial circuit defined by Tacr1 expression drives pain." eLife 10: e61135. https://pubmed.ncbi.nlm.nih.gov/33591273/
Basu, A., J.-H. Yang, et al. (2022). "Prefrontal norepinephrine represents a threat prediction error under uncertainty." https://doi.org/10.1101/2022.10.13.511463
Ben-Tov, M., F. Duarte, et al. (2023). "A neural hub for holistic courtship displays." Current Biology 33(9): 1640-1653.e1645. https://pubmed.ncbi.nlm.nih.gov/36944337/
Bian, W.-J., C. L. Brewer, et al. (2022). "Adolescent sleep shapes social novelty preference in mice." Nature Neuroscience 25(7): 912-923. https://pubmed.ncbi.nlm.nih.gov/35618950/
Bian, W.-J., O. C. González, et al. (2023). "Adolescent sleep defects and dopaminergic hyperactivity in mice with a schizophrenia-linked Shank3 mutation." Sleep 46(7): zsad131. https://pubmed.ncbi.nlm.nih.gov/37144901/
Chohan, M. O., J. M. Kopelman, et al. (2022). "Developmental impact of glutamate transporter overexpression on dopaminergic neuron activity and stereotypic behavior." Molecular Psychiatry 27(3): 1515-1526. https://pubmed.ncbi.nlm.nih.gov/35058566/
Corbit, V. L., S. C. Piantadosi, et al. (2020). "Dissociable roles of central striatum and anterior lateral motor area in initiating and sustaining naturalistic behavior." https://doi.org/10.1101/2020.01.08.899070
Costa, K. M., N. Raheja, et al. (2023). "Striatal dopamine release reflects a domain-general prediction error." https://doi.org/10.1101/2023.08.19.553959
Dawson, M., D. J. Terstege, et al. (2023). "Hypocretin/orexin neurons encode social discrimination and exhibit a sex-dependent necessity for social interaction." Cell Reports 42(7): 112815. https://pubmed.ncbi.nlm.nih.gov/37459234/
Décarie-Spain, L., C. M. Liu, et al. (2022). "Ventral hippocampus-lateral septum circuitry promotes foraging-related memory." Cell Reports 40(13): 111402. https://pubmed.ncbi.nlm.nih.gov/36170832/
Dong, A., K. He, et al. (2022). "A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo." Nature Biotechnology 40(5): 787-798. https://doi.org/10.1038/s41587-021-01074-4
Ejdrup, A. L., J. Wellbourne-Wood, et al. (2023). "Within-Mice Comparison of Microdialysis and Fiber Photometry-Recorded Dopamine Biosensor during Amphetamine Response." ACS Chemical Neuroscience 14(9): 1622-1630. https://pubmed.ncbi.nlm.nih.gov/37043174/
Escobedo, A., S.-A. Holloway, et al. (2023). "Glutamatergic Supramammillary Nucleus Neurons Respond to Threatening Stressors and Promote Active Coping." eLife 12. https://doi.org/10.7554/eLife.90972.1
Evans, A., D. J. Terstege, et al. (2022). "Neurogenesis mediated plasticity is associated with reduced neuronal activity in CA1 during context fear memory retrieval." Scientific Reports 12(1): 7016. https://pubmed.ncbi.nlm.nih.gov/35488117/
Falk, S., J. Petersen, et al. (2023). "GLP-1 and nicotine combination therapy engages hypothalamic and mesolimbic pathways to reverse obesity." Cell Reports 42(5): 112466. https://doi.org/10.1016/j.celrep.2023.112466
Fame, R. M., P. N. Kalugin, et al. (2023). "Defining diurnal fluctuations in mouse choroid plexus and CSF at high molecular, spatial, and temporal resolution." Nature Communications 14(1): 3720. https://doi.org/10.1038/s41467-023-39326-3
Fanning, A. S., A. M. Shakhawat, et al. (2021). "Population calcium responses of Purkinje cells in the oculomotor cerebellum driven by nonvisual input." Journal of Neurophysiology 126(4): 1391-1402. https://doi.org/10.1152/jn.00715.2020
Flanigan, M. E., H. Aleyasin, et al. (2020). "Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior in male mice." Nature Neuroscience 23(5): 638-650. https://pubmed.ncbi.nlm.nih.gov/32284606/
Flanigan, M. E., O. J. Hon, et al. (2023). "Subcortical serotonin 5HT2c receptor-containing neurons sex-specifically regulate binge-like alcohol consumption, social, and arousal behaviors in mice." Nature Communications 14(1): 1800. https://pubmed.ncbi.nlm.nih.gov/37002196/
Fornari, C., C. Guerrero-Márquez, et al. (2023). "Sexual dimorphism of insular cortex function in persistent alcohol drinking despite aversion in mice." https://doi.org/10.1101/2023.10.04.560817
Fritsche, M., A. Majumdar, et al. (2023). "Temporal regularities shape perceptual decisions and striatal dopamine signals." https://doi.org/10.1101/2023.08.18.553829
Furlan, A., A. Corona, et al. (2022). "Neurotensin neurons in the extended amygdala control dietary choice and energy homeostasis." Nature Neuroscience 25(11): 1470-1480. https://doi.org/10.1038/s41593-022-01178-3
Georgiou, P., T.-C. M. Mou, et al. (2022). "Estradiol mediates stress-susceptibility in the male brain." https://doi.org/10.1101/2022.01.09.475485
Georgiou, P., P. Zanos, et al. (2022). "Experimenters’ sex modulates mouse behaviors and neural responses to ketamine via corticotropin releasing factor." Nature Neuroscience 25(9): 1191-1200. https://doi.org/10.1038/s41593-022-01146-x
Giovanniello, J., K. Yu, et al. (2020). "A Central Amygdala-Globus Pallidus Circuit Conveys Unconditioned Stimulus-Related Information and Controls Fear Learning." Journal of Neuroscience 40(47): 9043-9054. https://pubmed.ncbi.nlm.nih.gov/33067362/
Giovanniello, J. R., N. Paredes, et al. (2023). "A dual-pathway architecture enables chronic stress to promote habit formation." bioRxiv: 2023.2010.2003.560731. https://doi.org/10.1101/2023.10.03.560731
Grimm, C., S. N. Duss, et al. (2022). "Locus Coeruleus firing patterns selectively modulate brain activity and dynamics." https://doi.org/10.1101/2022.08.29.505672
Gui, Y., N. S. Dahir, et al. (2023). "Cell autonomous regulation of the activation of AgRP neurons by the melanocortin-3 receptor." https://doi.org/10.1101/2023.06.28.546874
Gui, Y., N. S. Dahir, et al. (2023). "Melanocortin-3 receptor expression in AgRP neurons is required for normal activation of the neurons in response to energy deficiency." Cell Reports 42(10): 113188. https://doi.org/10.1016/j.celrep.2023.113188
Haggerty, D. L. and B. K. Atwood (2023). "Sex-Dependent Engagement of Anterior Insular Cortex Inputs to the Dorsolateral Striatum in Binge Alcohol Drinking." https://pubmed.ncbi.nlm.nih.gov/37662373/
Hayes, A. M. R., L. T. Lauer, et al. (2023). "Western diet consumption impairs memory function via dysregulated hippocampus acetylcholine signaling." https://pubmed.ncbi.nlm.nih.gov/37546790/
Hildebrandt, B. A., H. Fisher, et al. (2023). "Corticostriatal dynamics underlying components of binge-like consumption of palatable food in mice." Appetite 183: 106462. https://www.sciencedirect.com/science/article/abs/pii/S0195666323000156
Hollon, N. G., E. W. Williams, et al. (2021). "Nigrostriatal dopamine signals sequence-specific action-outcome prediction errors." Current Biology 31(23): 5350-5363.e5355. https://doi.org/10.1016/j.cub.2021.09.040
Hon, O. J., J. F. DiBerto, et al. (2022). "Serotonin modulates an inhibitory input to the central amygdala from the ventral periaqueductal gray." Neuropsychopharmacology 47(13): 2194-2204. https://pubmed.ncbi.nlm.nih.gov/35999277/
Hon, O. J., M. E. Flanigan, et al. (2023). "Corticotropin Releasing Factor in the Bed Nucleus of the Stria Terminalis modulates the behavioral consequences of unpredictable threat." https://doi.org/10.7554/eLife.89189.1
Hrvatin, S., S. Sun, et al. (2020). "Neurons that regulate mouse torpor." Nature 583(7814): 115-121. https://pubmed.ncbi.nlm.nih.gov/32528180/
Jacobs, D. S., M. C. Allen, et al. (2022). "Learning of probabilistic punishment as a model of anxiety produces changes in action but not punisher encoding in the dmPFC and VTA." eLife 11: e78912. https://pubmed.ncbi.nlm.nih.gov/36102386/
Jacobs, D. S. and B. Moghaddam (2020). "Prefrontal Cortex Representation of Learning of Punishment Probability During Reward-Motivated Actions." Journal of Neuroscience 40(26): 5063-5077. https://www.jneurosci.org/content/40/26/5063
Jang, S., I. Park, et al. (2023). "Impact of the circadian nuclear receptor REV-ERBα in dorsal raphe 5-HT neurons on social interaction behavior, especially social preference." Experimental & Molecular Medicine 55(8): 1806-1819. https://doi.org/10.1038/s12276-023-01052-7
Jørgensen, S. H., A. L. Ejdrup, et al. (2023). "Behavioral encoding across timescales by region-specific dopamine dynamics." Proceedings of the National Academy of Sciences 120(7): e2215230120. https://doi.org/10.1073/pnas.2215230120
Kagiampaki, Z., V. Rohner, et al. (2023). "Sensitive multicolor indicators for monitoring norepinephrine in vivo." Nature Methods 20(9): 1426-1436. https://pubmed.ncbi.nlm.nih.gov/37474807/
Kirshenbaum, G. S., C.-Y. Chang, et al. (2023). "Adult-born neurons maintain hippocampal cholinergic inputs and support working memory during aging." Molecular Psychiatry: 1-13. https://pubmed.ncbi.nlm.nih.gov/36778445/
Legaria, A. A., B. A. Matikainen-Ankney, et al. (2022). "Fiber photometry in striatum reflects primarily nonsomatic changes in calcium." Nature Neuroscience 25(9): 1124-1128. https://pubmed.ncbi.nlm.nih.gov/36042311/
Li, C., N. B. Saliba, et al. (2023). "Purkinje cell dopaminergic inputs to astrocytes regulate cerebellar-dependent behavior." Nature Communications 14(1): 1613. https://pubmed.ncbi.nlm.nih.gov/36959176/
Li, H., P. Namburi, et al. (2022). "Neurotensin orchestrates valence assignment in the amygdala." Nature 608(7923): 586-592. https://pubmed.ncbi.nlm.nih.gov/35859170/
Li, L., R. Durand-de Cuttoli, et al. (2023). "Social trauma engages lateral septum circuitry to occlude social reward." Nature 613(7945): 696-703. https://pubmed.ncbi.nlm.nih.gov/36450985/
Lipton, D. M., M. Tamimi, et al. (2023). "Striatal calcium transients detected by fiber photometry propagate to axons." https://doi.org/10.1101/2023.10.09.560813
Liu, J., M. S. Totty, et al. (2022). "Convergent Coding of Recent and Remote Fear Memory in the Basolateral Amygdala." Biological Psychiatry 91(9): 832-840. https://pubmed.ncbi.nlm.nih.gov/35246314/
Lopez-Rojas, J., C. A. De Solis, et al. (2022). "A direct lateral entorhinal cortex to hippocampal CA2 circuit conveys social information required for social memory." Neuron 110(9): 1559-1572.e1554. https://pubmed.ncbi.nlm.nih.gov/35180391/
Ma, L., J. Day-Cooney, et al. (2022). "Locomotion activates PKA through dopamine and adenosine in striatal neurons." Nature 611(7937): 762-768. https://doi.org/10.1038/s41586-022-05407-4
Martianova, E., R. Sadretdinova, et al. (2023). "Hypothalamic neuronal outputs transmit sensorimotor signals at the onset of locomotor initiation." iScience: 108328. https://doi.org/10.1016/j.isci.2023.108328
McClain, S. P., X. Ma, et al. (2023). "In vivo photopharmacology with light-activated opioid drugs." Neuron: S0896627323007043. https://doi.org/10.1016/j.neuron.2023.09.017
Muir, J., Y. C. Tse, et al. (2022). "Sexually dimorphic neural encoding of threat discrimination in nucleus accumbens afferents drives suppression of reward behavior." https://doi.org/10.1101/2022.10.04.510865
Murphy, K. R., J. S. Farrell, et al. (2022). "A tool for monitoring cell type–specific focused ultrasound neuromodulation and control of chronic epilepsy." Proceedings of the National Academy of Sciences 119(46): e2206828119. https://doi.org/10.1073/pnas.2206828119
Nasrallah, K., C. Berthoux, et al. (2021). "Retrograde adenosine/A2A receptor signaling mediates presynaptic hippocampal LTP and facilitates epileptic seizures." https://doi.org/10.1101/2021.10.07.463512
O'Neal, T. J., M. X. Bernstein, et al. (2022). "A Conditioned Place Preference for Heroin Is Signaled by Increased Dopamine and Direct Pathway Activity and Decreased Indirect Pathway Activity in the Nucleus Accumbens." The Journal of Neuroscience 42(10): 2011-2024. https://doi.org/10.1523/JNEUROSCI.1451-21.2021
Pham, C., Y. Komaki, et al. (2023). "Astrocyte aquaporin mediates a tonic water efflux maintaining brain homeostasis." https://doi.org/10.1101/2023.10.03.560471
Proulx, C. D., S. Aronson, et al. (2018). "A neural pathway controlling motivation to exert effort." Proceedings of the National Academy of Sciences of the United States of America 115(22): 5792-5797. https://pubmed.ncbi.nlm.nih.gov/29752382/
Qian, Y., J. Li, et al. (2022). "Programmable RNA sensing for cell monitoring and manipulation." Nature 610(7933): 713-721. https://pubmed.ncbi.nlm.nih.gov/36198803/
Ren, L. Y., A. Cicvaric, et al. (2022). "Stress-induced changes of the cholinergic circuitry promote retrieval-based generalization of aversive memories." Molecular Psychiatry 27(9): 3795-3805. https://pubmed.ncbi.nlm.nih.gov/35551246/
Roland, A. V., T.-H. Harry Chao, et al. (2023). "Acute and chronic alcohol modulation of extended amygdala calcium dynamics." bioRxiv: 2023.2010.2010.561741. https://doi.org/10.1101/2023.10.10.561741
Rupprecht, P., S. N. Duss, et al. (2023). "Centripetal integration of past events by hippocampal astrocytes and its regulation by the locus coeruleus." https://doi.org/10.1101/2022.08.16.504030
Scott, R., A. Aubry, et al. (2023). "A critical role for cortical amygdala circuitry in shaping social encounters." Research Square: rs.3.rs-3015820. https://pubmed.ncbi.nlm.nih.gov/37461537/
Sias, A. C., Y. Jafar, et al. (2023). "Dopamine projections to the basolateral amygdala drive the encoding of identity-specific reward memories." https://doi.org/10.1101/2022.09.26.509602
Sias, A. C., A. K. Morse, et al. (2021). "A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories." eLife 10: e68617. https://pubmed.ncbi.nlm.nih.gov/34142660/
Singh Alvarado, J., J. Goffinet, et al. (2021). "Neural dynamics underlying birdsong practice and performance." Nature 599(7886): 635-639. https://pubmed.ncbi.nlm.nih.gov/34671166/
Stujenske, J. M., P.-K. O'Neill, et al. (2022). "Prelimbic cortex drives discrimination of non-aversion via amygdala somatostatin interneurons." Neuron 110(14): 2258-2267.e2211. https://pubmed.ncbi.nlm.nih.gov/35397211/
Su, Z. and J. Y. Cohen (2022). Two types of locus coeruleus norepinephrine neurons drive reinforcement learning, Neuroscience. https://doi.org/10.1101/2022.12.08.519670
Subramanian, K. S., L. T. Lauer, et al. (2023). "Hypothalamic melanin-concentrating hormone neurons integrate food-motivated appetitive and consummatory processes in rats." Nature Communications 14(1): 1755. https://doi.org/10.1038/s41467-023-37344-9
Suthard, R. L., R. A. Senne, et al. (2023). "Basolateral Amygdala Astrocytes Are Engaged by the Acquisition and Expression of a Contextual Fear Memory." Journal of Neuroscience 43(27): 4997-5013. https://pubmed.ncbi.nlm.nih.gov/37268419/
Tang, J. C. Y., V. Paixao, et al. (2022). "Dynamic refinement of behavioral structure mediates dopamine-dependent credit assignment." https://doi.org/10.1101/2022.09.22.507905
Terem, A., Y. Fatal, et al. (2023). "Claustral neurons projecting to frontal cortex restrict opioid consumption." Current Biology 33(13): 2761-2773.e2768. https://doi.org/10.1016/j.cub.2023.05.065
Terstege, D. J., Y. Ren, et al. (2023). "Sex-dependent impairments of parvalbumin expressing neurons in the retrosplenial cortex in Alzheimer’s disease." https://doi.org/10.1101/2023.06.22.546142
Tsuno, Y., Y. Peng, et al. (2023). "In vivo recording of suprachiasmatic nucleus dynamics reveals a dominant role of arginine vasopressin neurons in circadian pacesetting." PLOS Biology 21(8): e3002281. https://doi.org/10.1371/journal.pbio.3002281
Unger, E. K., J. P. Keller, et al. (2020). "Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning." Cell 183(7): 1986-2002.e1926. https://pubmed.ncbi.nlm.nih.gov/33333022/
Vachez, Y. M., J. R. Tooley, et al. (2021). "Ventral arkypallidal neurons inhibit accumbal firing to promote reward consumption." Nature Neuroscience 24(3): 379-390. https://pubmed.ncbi.nlm.nih.gov/33495635/
Wang, R., K. M. Khan, et al. (2023). "Alcohol inhibits sociability via serotonin inputs to the nucleus accumbens." https://pubmed.ncbi.nlm.nih.gov/37398335/
Wei, W., A. Mohebi, et al. "Striatal dopamine pulses follow a temporal discounting spectrum." https://doi.org/10.1101/2021.10.31.466705
Wei, W., A. Mohebi, et al. (2022). "A Spectrum of Time Horizons for Dopamine Signals." https://doi.org/10.1101/2021.10.31.466705
Xiao, S., V. Michael, et al. (2023). "Nested circuits mediate the decision to vocalize." eLife 12: e85547. https://pubmed.ncbi.nlm.nih.gov/37314164/
Yang, T., K. Yu, et al. (2023). "Plastic and stimulus-specific coding of salient events in the central amygdala." Nature 616(7957): 510-519. https://doi.org/10.1038/s41586-023-05910-2
Yao, Y., Z. Barger, et al. (2022). "Cardiovascular baroreflex circuit moonlights in sleep control." Neuron 110(23): 3986-3999.e3986. https://pubmed.ncbi.nlm.nih.gov/36170850/
Zapata, R. C., D. Zhang, et al. (2023). "Nuclear receptor 5A2 regulation of Agrp underlies olanzapine-induced hyperphagia." Molecular Psychiatry 28(5): 1857-1867. https://doi.org/10.1038/s41380-023-01981-9
Zhang, X., W. Guan, et al. (2021). "Genetically identified amygdala–striatal circuits for valence-specific behaviors." Nature Neuroscience 24(11): 1586-1600. https://pubmed.ncbi.nlm.nih.gov/34663958/
Alessandro, F., C. Alberto, et al. (2021). "Neurotensin neurons in the central extended amygdala control energy balance." bioRxiv: 2021.2008.2003.454970. https://doi.org/10.1101/2021.08.03.454970
Alex, A. L., Y. Ben, et al. (2021). "Striatal fiber photometry reflects primarily non-somatic activity." bioRxiv: 2021.2001.2020.427525. https://doi.org/10.1101/2021.01.20.427525
Au - Martianova, E., S. Au - Aronson, et al. (2019). "Multi-Fiber Photometry to Record Neural Activity in Freely-Moving Animals." JoVE(152): e60278. https://www.jove.com/t/60278/multi-fiber-photometry-to-record-neural-activity-freely-moving
Barik, A., A. Sathyamurthy, et al. (2021). "A spinoparabrachial circuit defined by Tacr1 expression drives pain." eLife 10: e61135. https://doi.org/10.7554/eLife.61135
Brenda, A., A. Robyn, et al. (2022). "Urocortin-3 neurons in the perifornical area mediate the impact of chronic stress on female infant-directed behavior." bioRxiv: 2022.2002.2019.481074. https://doi.org/10.1101/2022.02.19.481074
Hildebrandt, B. A., H. Fisher, et al. (2023). "Corticostriatal dynamics underlying components of binge-like consumption of palatable food in mice." Appetite 183: 106462. https://doi.org/10.1016/j.appet.2023.106462
David, S. J. and M. Bita (2020). "Prefrontal Cortex Representation of Learning of Punishment Probability During Reward-Motivated Actions." The Journal of Neuroscience 40(26): 5063. https://doi.org/10.1523/JNEUROSCI.0310-20.2020
Dong, A., K. He, et al. (2022). "A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo." Nature Biotechnology 40(5): 787-798. https://doi.org/10.1038/s41587-021-01074-4
Ekaterina, M., P. Alicia, et al. (2021). "Coherent activity at three major lateral hypothalamic neural outputs controls the onset of motivated behavior responses." bioRxiv: 2021.2004.2028.441785. https://doi.org/10.1101/2021.04.28.441785
Flanigan, M. E., H. Aleyasin, et al. (2020). "Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior in male mice." Nature Neuroscience 23(5): 638-650. https://doi.org/10.1038/s41593-020-0617-7
Hrvatin, S., S. Sun, et al. (2020). "Neurons that regulate mouse torpor." Nature 583(7814): 115-121. https://doi.org/10.1038/s41586-020-2387-5
Jacqueline, G., Y. Kai, et al. (2020). "A Central Amygdala-Globus Pallidus Circuit Conveys Unconditioned Stimulus-Related Information and Controls Fear Learning." The Journal of Neuroscience 40(47): 9043. https://doi.org/10.1523/JNEUROSCI.2090-20.2020
Kaoutsar, N., B. Coralie, et al. (2021). "Retrograde adenosine/A2A receptor signaling mediates presynaptic hippocampal LTP and facilitates epileptic seizures." bioRxiv: 2021.2010.2007.463512. https://doi.org/10.1101/2021.10.07.463512
Mor, B.-T., D. Fabiola, et al. (2021). "A neural hub that coordinates learned and innate courtship behaviors." bioRxiv: 2021.2009.2009.459618. https://doi.org/10.1101/2021.09.09.459618
Proulx, C. D., S. Aronson, et al. (2018). "A neural pathway controlling motivation to exert effort." Proceedings of the National Academy of Sciences 115(22): 5792-5797. https://doi.org/10.1073/pnas.180183711
Singh Alvarado, J., J. Goffinet, et al. (2021). "Neural dynamics underlying birdsong practice and performance." Nature 599(7886): 635-639. https://doi.org/10.1038/s41586-021-04004-1
Timothy, J. O., Neal, et al. (2022). "A Conditioned Place Preference for Heroin Is Signaled by Increased Dopamine and Direct Pathway Activity and Decreased Indirect Pathway Activity in the Nucleus Accumbens." The Journal of Neuroscience 42(10): 2011. https://doi.org/10.1523/JNEUROSCI.1451-21.2021
Unger, E. K., J. P. Keller, et al. (2020). "Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning." Cell 183(7): 1986-2002.e1926. https://doi.org/10.1016/j.cell.2020.11.040
Vachez, Y. M., J. R. Tooley, et al. (2021). "Ventral arkypallidal neurons inhibit accumbal firing to promote reward consumption." Nature Neuroscience 24(3): 379-390. https://doi.org/10.1038/s41593-020-00772-7
Victoria, L. C., C. P. Sean, et al. (2020). "Dissociable roles of central striatum and anterior lateral motor area in initiating and sustaining naturalistic behavior." bioRxiv: 2020.2001.2008.899070. https://doi.org/10.1101/2020.01.08.899070
Xiao, X., H. Deng, et al. (2020). "A Genetically Defined Compartmentalized Striatal Direct Pathway for Negative Reinforcement." Cell 183(1): 211-227.e220. https://doi.org/10.1016/j.cell.2020.08.032
Alexandria, E., J. T. Dylan, et al. (2021). "Neurogenesis mediated plasticity is associated with reduced neuronal activity in CA1 during context fear memory retrieval." bioRxiv: 2021.2003.2024.436893. https://doi.org/10.1101/2021.03.24.436893
Dong, A., K. He, et al. (2022). "A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo." Nature Biotechnology 40(5): 787-798. https://doi.org/10.1038/s41587-021-01074-4
Hollon, N. G., E. W. Williams, et al. (2021). "Nigrostriatal dopamine signals sequence-specific action-outcome prediction errors." Current Biology 31(23): 5350-5363.e5355. https://doi.org/10.1016/j.cub.2021.09.040
Jeffrey, L.-R., A. d. S. Christopher, et al. (2021). "A direct lateral entorhinal cortex to hippocampal CA2 circuit conveys social information required for social memory." bioRxiv: 2021.2004.2015.440048. https://doi.org/10.1101/2021.04.15.440048
Jianfeng, L., S. T. Michael, et al. (2022). "Convergent coding of recent and remote fear memory in the basolateral amygdala." bioRxiv: 2021.2009.2027.462008. https://doi.org/10.1101/2021.09.27.462008
Murphy, K. R., J. S. Farrell, et al. (2022). "A tool for monitoring cell type–specific focused ultrasound neuromodulation and control of chronic epilepsy." Proceedings of the National Academy of Sciences 119(46): e2206828119. https://doi.org/10.1073/pnas.2206828119
Wei, W., M. Ali, et al. (2022). "A Spectrum of Time Horizons for Dopamine Signals." bioRxiv: 2021.2010.2031.466705. https://doi.org/10.1101/2021.10.31.466705