Gene Therapy May Be Answer to Effective Parkinson’s Treatment; Neurolucida Plays Role in Study

iStock_parkinsons

Neurotrophic factors may be the key to the cure for Parkinson’s, Huntington’s, Alzheimer’s, and other neurodegenerative disorders. Scientists have known this for over twenty years. But the question continues to loom – how does one safely and effectively deliver the neurotrophic factors to the damaged neurons? Dr. Raymond Bartus and his team at Ceregene, a biotechnology company in San Diego, have developed an innovative approach that may be the answer.

Rather than focusing on conventional methods of neurotrophic factor delivery, which have always been extremely difficult and resulted in undesirable side effects, the Ceregene researchers took a different approach. They turned to gene therapy. Instead of delivering the restorative protein to the targeted sites in the brain, the Ceregene researchers developed a way to deliver only the gene for the protein. Once in place, the gene induces local cells to make the protein on site.

Continue reading “Gene Therapy May Be Answer to Effective Parkinson’s Treatment; Neurolucida Plays Role in Study” »

Gene Therapy Improves Parkinson’s Symptoms

Patients suffering from Parkinson’s disease may have a new way to manage their illness: gene therapy. Scientists at seven leading gene therapy centers across the US saw improvements in patients when a gene that helps produce the inhibitory transmitter GABA was introduced to quiet the subthalamic nucleus, an overactive region of the brain in Parkinson’s patients.

Twenty-two subjects from a group of 45 patients aged 30-75 received AAV2-GAD infusions, while the rest underwent sham surgery. Over the course of six-months, the group that received gene therapy showed significant improvement in Parkinson’s symptoms, according to a study published this month in The Lancet Neurology.

Encouraged by the success of the trial and safety of the method, the investigators, including MBF Bioscience customer Dr. Michael G Kaplitt of Weill Cornell Medical College, plan to further their research with a larger clinical trial.

Read more about the study at nature.com and access the abstract and full article text at thelancet.com.

LeWitt, P. A. et al. Lancet Neurol. doi:10.1016/S1474-4422(11)70039-4 (2011).

Yale Scientists Say AAV5 is Best for Transduction in Primates

Scientists who research genetic disorders might want to reconsider the way they transfer therapeutic genes to cells in the central nervous system.

Adeno-associated virus (AAV) vectors are the most common way to transfer DNA into neural cells because of their nonpathogenic nature and long-term transduction abilities. Specifically, researchers most frequently use AAV serotype 2 (AAV2). But scientists at the Yale University School of Medicine believe that AAV serotype 5 (AAV5) is a more effective way to go when carrying out genetic transduction in the nonhuman primate brain.

In their study, the research team injected the brains of St. Kitts green monkeys with vectors from AAV serotypes 1-6, each of which contained an enhanced green-fluorescent protein reporter gene (GFP). One month later, immunohistochemistry and unbiased stereology were used to analyze the tissue and count the number of GFP cells.

“We used Stereo Investigator to do all of the quantitative comparisons between the different vector serotypes and their gene expression,” explained Dr. Gene Redmond.

Though all six serotypes were able to generate the reporter gene in the monkey’s brain cells, AAV serotype 5 was by far the most efficient, according to the study.

“The goal in human neurosurgical procedures delivering viral vectors to the brain is to make as little perturbation of brain tissue as is possible while delivering the needed gene for the appropriate duration. Viral vectors that can generate a large overall area of transduction and have a tropism for the desired cell type may allow for the delivery of the smallest possible amount of vector, resulting in maximal gene delivery while minimizing tissue damage, inappropriate spread, or the possibility of incorporation into the host genome.” (from the paper)

Read the free abstract or download the complete paper “Comparative Transduction Efficiency of AAV Vector Serotypes 1–6 in the Substantia Nigra and Striatum of the Primate Brain” at nature.com.

Eleni A Markakis, Kenneth P Vives, Jeremy Bober, Stefan Leichtle, Csaba Leranth, Jeff Beecham, John D Elsworth, Robert H Roth, R Jude Samulski and D Eugene Redmond Jr, “Comparative Transduction Efficiency of AAV Vector Serotypes 1–6 in the Substantia Nigra and Striatum of the Primate Brain” (Molecular Therapy (2010) 18 3, 588–593)

If you enjoyed this article, fan us on Facebook and follow us on Twitter to get the latest news about scientific advancements being made by MBF Bioscience customers.