
Introduction

Comparative Analysis

Stereology is a rigorous and unbiased methodology for quantifying features of biological tissues 
such as the size, shape, distribution, and quantity of objects. Although it is the gold-standard for 
quantification, wide-spread adoption of stereological analysis has been hindered because it is labor-
intensive, even with modern software tools.

Cellairus dramatically accelerates stereological cell counting through the use of machine learning. 
Once the machine learning algorithms are trained, Cellairus identifies cells in 3D volumes throughout 
brain regions using the same observer criteria as a human expert. 

Manual and automated stereology were performed in order to assess the performance of Cellairus 
across multiple imaging technologies. True positive and false positive detection rates were quantified 
and compared between cell counting methods.
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Cellairus integrates candidate object detection, machine learning, and stereologic counting rules to identify, 
classify, and quantify cells in 3D microscopy images. Object detection uses a multiple scale model of cell appearance 
to identify the locations and boundaries of candidate cells within the image. 

We use multiple scale Laplacian of Gaussian (LoG) filters to perform the detection in 3D of candidate regions 
most likely to contain objects of interest. LoG filter scale range selection is determined by matching the size 
of the target objects. Filter response thresholds are set to a very low value to ensure detection of low contrast 
objects. The region candidate detection process is designed to detect all valid target objects even at the expense 
of generating large numbers of false positive region candidates.

Partial maximum intensity projections in XY, YZ, and XZ reduce the 3D regions of interest into 2D images. Our 
custom Convolutional Neural Network (CNN) performs the task of classifying the candidate regions into valid 
and invalid object categories; and bounding box regression to adjust object size and location in 3D space. The final 
step of the detection process involves valid object clustering in order to eliminate redundant object detection.

Stereologic counting rules are applied to the updated cell models. The combination of advanced machine learning 
algorithms and established stereologic counting rules enables accurate and unbiased quantification of cells in 3D 
microscopy images that permit validation. Benchmark goals of 90% correct detection, and less than 10% for false 
positive and false negative rates were set.  

Research Methods

Imaging fluorescent mouse brain specimens
Tissue samples were acquired from experiments performed in 
accordance with guidelines for the care and use of laboratory 
animals by FD Neurotechnologies. 30µm thick mouse brain 
coronal sections were incubated with DAPI and NeuN with a 
Alexa Fluor 488 fluorescent secondary. A randomized start was 
selected for the sections containing the anterior cingulate cortex, 
yielding 9 sections in the dataset.

3D Whole Slide Images of the region of the hemisphere containing 
the region of interest were acquired using a resonant scanning 
confocal microscope system equipped with a 60x (1.4 NA) Zeiss oil 
lens. Images of the region of interest (anterior cingulate cortex) were 
acquired at z-step increments of 0.76 µm and saved in a 3D image 
file (.jpx) for further analysis.  

Stereological Methods 
Stereological cell counts were obtained using the Optical 
Fractionator design-based stereologic probe.  Contours of the 
anterior cingulate cortex in each section were drawn manually 
using the Allen Mouse Brain atlas as an anatomical reference. The 
same grid throw and counting sites were used for both manual 
validation and automated detection.

Stereological Design Parameters

Region of Interest Anterior Cingulate Cortex

Cut Section Thickness 30 µm

Section Sampling Fraction 1/16

Counting Frame Size 50 x 50 µm

Grid Size 200 x 200 µm

Disector Height 15 µm

Guard Zone Height 2 µm

Total Number of Sites 118

Total Number of Sections 9

 Calculate Thickness

Cellairus estimates the section thickness at every 
site by evaluating a focus metric on all planes in the 
subvolume and selecting the top and bottom planes 
for which the focus metric rises above a stack-adapted 
level. Using this approach, the computed thickness 
variation is consistent with that obtained by manual 
measurement by multiple users.

Stereology Parameters
Cellairus utilizes pre-acquired 3D whole-section 
images or systematic random sampling (SRS) 
image stacks. A workflow guides the user through 
the process of setting up a study; delineating 
contours, defining the counting frame, grid 
spacing, and disector parameters.

Our convolutional neural networks (CNN) are 
first  trained by employing transfer learning. They 
are then fine tuned for the detection of specific 
cellular objects under specific tissue types,  imaging 
conditions (confocal/widefield) and stains.

Train Machine Learning Classifier

Multiple Scale Laplacian of Gaussian (LoG) Region Candidate Detection

The region proposal modules that feed the 
classifier/regressor use multiple scale LoG filters 
operating on each channel. Our goal is maximum 
sensitivity (all valid regions must be detected) 
even at the expense of specificity (high number of 
negative object candidates).

•	For this subject, the section thicknesses measured by Cellairus were compared against section thicknesses 
determined manually by four trained experts. Cellairus was more consistent in section thickness measurements 
than manual determinations and was comparable to human determined measurements.

•	Two different cellular labels, DAPI (a pan-cellular nuclear stain) and NeuN (an immunohistochemical label 
for neurons) highlight how differences in histological preparations can influence detection strategies & 
results.  

•	Precise marker placement by the algorithm ensures  that  counting rules are objectively and consistently  
applied throughout the study. However, manual stereology requires a subjective decision about whether an 
object is a cell and if it is within the counting frame.  Therefore, there will be incongruencies between human 
and human, as well as human and machine.

•	Cellairus performed well for NeuN labeled populations for both widefield and confocal images.  
•	Widefield images had an average True Positive Rate of 89% and a False Positive Rate of 7%.
•	Confocal images had an average True Positive Rate of 89% and a False Positive Rate of 13%,  however, when 

comparing the false positives from Cellairus to that of the manual counter, it was discovered that there were 
dimly labeled cells that were missed by the manual counter.

Apply Counting Rules & Calculate Population Estimates
Each counting frame site, with its automatically 
detected objects, is filtered to only retain the 
detected cells that fall within the disector.

Counting rules of the Optical Disector apply to each cell to 
• include cell centroid within the 3D counting frame
• exclude ell centroid external to the 3D counting frame
• examine counting frame intercepts with region of interest

Entire studies are rapidly processed. The nine sections 
of the current study were processed in ~6 minutes, 
while manual methods required ~6 hours.

•	3D cell detection using machine learning techniques are superior to non-adaptable methods.
•	Algorithms for determining section thickness align well with manual counters and enable accurate 

determination of the height sampling fraction.
•	The use of stereology ensures that machine learning results can be validated simply and robustly. This 

is beneficial for testing new classifiers and running large studies alike. 
•	We plan to obtain ground truth data from several manual counters and compare them to data obtained 

by Cellairus.
•	We will perform further training of classifiers for a variety of cell labelling techniques.       
We are confident these strategies will produce extensible classifiers appropriate for many cell labels and 
regional anatomies. 

Conclusions and Future Directions

Cellairus® Workflow Operation


