

| AREA FRACTION FRACTIONATOR | 2  |
|----------------------------|----|
| CAVALIERI ESTIMATOR        | 3  |
| CYCLOIDS FOR LV            | 5  |
| IMAGE VOLUME FRACTIONATOR  | 7  |
| IMAGE VOLUME SPACEBALLS    |    |
| ISOTROPIC FAKIR            | 13 |
| NUCLEATOR                  | 14 |
| OPTICAL ROTATOR            | 15 |
| PLANAR ROTATOR             | 17 |
| SURFACTOR                  | 19 |



# AREA FRACTION FRACTIONATOR

| Estimated volume fraction $(\widehat{V}_{\nu})$ | $\widehat{V_{v}}(Y, ref) = \frac{\sum_{i=1}^{m} P(Y)_{i}}{\sum_{i=1}^{m} P(ref)_{i}}$ | <ul> <li>P(ref) Points hitting reference volume</li> <li>Y Sub-region</li> <li>P(Y) Points hitting sub-region</li> </ul> |
|-------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Estimated area ( $\hat{A}$ )                    | $\hat{A} = \frac{1}{asf} \cdot a(p) \cdot P(Y_i)$                                     | asf Area sampling fraction $a(p)$ Area associated with a point                                                           |

### References

Howard, C. V., & Reed, M. G. (1998). *Unbiased Stereology, Three-Dimensional Measurement in Microscopy* (pp. 170–172). Milton Park, England: BIOS Scientific Publishers.



## CAVALIERI ESTIMATOR

| Area associated with a point ( $A_p$ )                     | $A_p = g^2$                                                         | $g^2$ Grid area                                                                                                                            |
|------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Volume associated<br>with a point (V <sub>P</sub> )        | $V_p = g^2 m \bar{t}$                                               | $m$ Section evaluation interval $\bar{t}$ Mean section cut thickness                                                                       |
| Estimated volume (ν)                                       | $\widehat{V} = A_p m' \overline{t} \left( \sum_{i=1}^n P_i \right)$ | $A_p$ Area associated with a point $m'$ Section evaluation interval $\overline{t}$ Mean section cut thickness $P_i$ Points counted on grid |
| Estimated volume<br>corrected for<br>over-projection ([v]) | $[v] = t \cdot \left(k \cdot \sum_{j=1}^{g} a'_j - max(a')\right)$  | <i>t</i> Section cut thickness<br><i>k</i> Correction factor<br><i>g</i> Grid size<br><i>a</i> ' Projected area                            |
| Coefficient of error<br>(CE)                               | $CE = \frac{\sqrt{TotalVar}}{\sum_{i=1}^{n} P_i}$                   | TotalVar Total variance of the estimated volume $n$ Number of sections $P_i$ Points counted on gridTotalVar = $s^2 + VAR_{SRS}$            |



#### Cavalieri Estimator (2)

| Variance of systematic<br>random sampling<br>(VAR <sub>SRS</sub> ) | $VAR_{SRS} = \frac{3(A - s^2) - 4B + C}{12}, m = 0$ $VAR_{SRS} = \frac{3(A - s^2) - 4B + C}{240}, m = 1$ | <i>m</i> Smoothness class of sampled function<br>$s^2$ Variance due to noise<br>$A = \sum_{i=1}^{n} P_i^2$ , $B = \sum_{i=1}^{n-1} P_i P_{i+1}$ , $C = \sum_{i=1}^{n-2} P_i P_{i+2}$<br>With:<br><i>n</i> : number of sections<br>$s^2 = 0.0724 \left(\frac{b}{2}\right) \sqrt{n \sum_{i=1}^{n} P_i}$ |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    |                                                                                                          | $\frac{b}{\sqrt{a}}$ Shape factor                                                                                                                                                                                                                                                                     |

#### References

García-Fiñana, M., Cruz-Orive, L.M., Mackay, C.E., Pakkenberg, B. & Roberts, N. (2003). <u>Comparison of MR imaging against physical</u> <u>sectioning to estimate the volume of human cerebral compartments</u>. *Neuroimage, 18* (2), 505–516.

Gundersen, H. J. G., & Jensen, E.B. (1987). The efficiency of systematic sampling in stereology and its prediction. Journal of Microscopy, 147 (3), 229–263.

Howard, C. V., & Reed, M.G. (2005). Unbiased Stereology, Three-Dimensional Measurement in Microscopy (Chapter 3). New York: Garland Science/BIOS Scientific Publishers.



# CYCLOIDS FOR LV

| Area associated with a point $(A_p)$     | $A_p = g^2$                                                                                                                                                                                                                                                                      | $g^2$ Grid area                                                                                                                                                                                                                                                                                                  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume associated with a point ( $V_p$ ) | $V_p = g^2 m \bar{t}$                                                                                                                                                                                                                                                            | $g^2$ Grid area<br><i>m</i> Section evaluation interval<br>$\overline{t}$ Mean section cut thickness                                                                                                                                                                                                             |
| Length per unit<br>volume ( $L_{\nu}$ )  | $L_{V} = 2 \frac{\left[\bar{I}_{L}^{C}\right]_{prj}}{\Delta}$ $L_{V} = \frac{2}{\Delta} \cdot \frac{\left(\bar{I}_{c}^{cyc}\right)_{prj}}{\bar{P} \cdot \left(\frac{l}{p}\right)} = \frac{2}{\Delta} \left(\frac{p}{p}\right) \frac{\sum_{i=1}^{n} I_{i}}{\sum_{i=1}^{n} P_{i}}$ | $\left[\overline{I}_{L}^{C}\right]_{prj}$ Number of counting frames<br>$\Delta$ Section cut thickness<br>$I_{i}$ Intercepts<br>$P_{i}$ Test points<br>$\left[\overline{I}_{C}^{cyc}\right]_{prj}$ Average number of intersections of<br>projected images<br>$\frac{p}{1}$ Test points per unit length of cycloid |
| Estimated volume (疗)                     | $\hat{V} = m\Delta\left(\frac{a}{p}\right)\sum_{i=1}^{n} P_i$                                                                                                                                                                                                                    | m Sampling fractions<br>$\Delta$ Section cut thickness<br>a Area<br>p Number of test points<br>$P_i$ Test points                                                                                                                                                                                                 |
| Estimated length ( $\hat{L}$ )           | $\hat{L} = 2\left(\frac{a}{l}\right)m\sum_{i=1}^{n}I_{i}$                                                                                                                                                                                                                        | <i>a</i> Area<br><i>I</i> Line length<br><i>m</i> Sampling fractions<br><i>Ii</i> Intercepts                                                                                                                                                                                                                     |



### Cycloids for Lv (2)

| Coefficient of error for line<br>length                      | $CE(\hat{L} L) = \frac{\sqrt{VAR_{SRS}}}{\sum_{i=1}^{n} I_i}$ | $VAR_{SRS}$ Variance of systematic random sampling $\widehat{L} L$ Estimated length per length $I_i$ Intercepts |
|--------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Variance of systematic random sampling (VAR <sub>SRS</sub> ) | $VAR_{SRS} = \frac{3g_0 - 4g_1 + g_2}{12}$                    | g Grid size $L_i$ Line length at section i                                                                      |
|                                                              | $g_k = \sum_{i=1}^{n-k} L_i L_{i+k}$                          |                                                                                                                 |

| Coefficient of<br>error for length<br>density | $CE(L_V) = \sqrt{\frac{n}{n-1} \left( \frac{\sum_{i=1}^{n} I_i^2}{\sum_{i=1}^{n} I_i \sum_{i=1}^{n} I_i} + \frac{\sum_{i=1}^{n} P_i^2}{\sum_{i=1}^{n} P_i \sum_{i=1}^{n} P_i} - 2 \frac{\sum_{i=1}^{n} I_i P_i}{\sum_{i=1}^{n} I_i \sum_{i=1}^{n} P_i} \right)}$ | <i>Ii</i> Intercepts<br><i>Pi</i> Test points<br><i>n</i> Number of probes |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|

#### References

Artacho-Pérula, E., Roldán-Villalobos, R. (1995). Estimation of capillary length density in skeletal muscle by unbiased stereological methods: I. Use of vertical slices of known thickness The Anatomical Record, 241 (3), 337-344.

Gokhale, A. M. (1990). Unbiased estimation of curve length in 3-D using vertical slices. Journal of Microscopy, 159 (2), 133–141.

Howard, C. V., Reed, M.G. (1998). Unbiased Stereology, Three-Dimensional Measurement in Microscopy (pp. 170–172). BIOS Scientific Publishers.



### IMAGE VOLUME FRACTIONATOR

| Estimate of total number of particles ( <i>N</i> )                       | $N = \sum Q^- \cdot \frac{1}{asf} \cdot \frac{1}{zsf}$                                                       | $Q^-$ Particles counted<br>asf Area sampling fraction (counting frame/grid size)<br>zsf Section sampling fraction (disector height/virtual<br>section thickness)    |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variance due to<br>systematic random<br>sampling – Gundersen<br>(VARsRs) | $VAR_{SRS} = \frac{3(A - s^2) - 4B + C}{12}, m$ $= 0$ $VAR_{SRS} = \frac{3(A - s^2) - 4B + C}{240}, m$ $= 1$ | $A = \sum_{i=1}^{n} (Q_i^{-})^2$<br>$B = \sum_{i=1}^{n-1} Q_i^{-} Q_{i+1}^{-}$<br>$C = \sum_{i=1}^{n-2} Q_i^{-} Q_{i+2}^{-}$<br>$s^2 \text{ Variance due to noise}$ |
| Variance due to noise -<br>Gundersen (S <sup>2</sup> )                   | $s^2 = \sum_{i=1}^n Q^-$                                                                                     | $Q^-$ Particles counted<br>n Number of sections used                                                                                                                |
| Total variance –<br>Gundersen ( <i>TotalVar</i> )                        | $TotalVar = s^2 + VAR_{SRS}$                                                                                 | <i>VAR<sub>SRS</sub></i> Variance due to SRS<br><i>s</i> <sup>2</sup> Variance due to noise                                                                         |
| Coefficient of error –<br>Gundersen ( <i>CE</i> )                        | $CE = \frac{\sqrt{TotalVar}}{s^2}$                                                                           | TotalVarTotal variance $s^2$ Variance due to noise                                                                                                                  |



### Image Volume Fractionator (2)

| Coefficient of error – Scheaffer<br>(CE)                    | $CE = \frac{\sqrt{s^2 \left(\frac{1}{f} - \frac{1}{F}\right)}}{\bar{Q}}$ | $f$ Number of counting frames $F$ Total possible sampling sites $s^2$ Estimated variance $\overline{Q}$ Average particles counted   |
|-------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Average number of particles – Scheaffer ( $\overline{Q}$ )  | $\bar{Q} = \frac{\sum_{i=1}^{f} Q_i}{f}$                                 | $Q_i$ Particles counted $f$ Number of counting frames                                                                               |
| Estimated variance - Scheaffer<br>(S <sup>2</sup> )         | $s^{2} = \frac{\sum_{i=1}^{f} (Q_{i} - \bar{Q})^{2}}{f - 1}$             | $f$ Number of counting frames $Q_i$ Particles counted $\overline{\mathbf{Q}}$ Average particles counted                             |
| Estimated variance of estimated cell population - Scheaffer | $\frac{C_{fp}F^2s^2}{f}$                                                 | $C_{fp}$ Finite population correction<br>$s^2$ Estimated variance<br>f Number of counting frames<br>F Total possible sampling sites |
| Estimated variance of mean cell<br>count - Scheaffer        | $\frac{C_{fp}s^2}{f}$                                                    | $C_{fp}$ Finite population correction<br>$s^2$ Estimated variance<br>f Number of counting frames                                    |



#### Image Volume Fractionator (3)

| Estimated mean coefficient of<br>error – Cruz-Orive ( <i>est Mean CE</i> )                     | est Mean CE (est N) = $\left[\frac{1}{3n} \cdot \sum_{i=1}^{n} \left(\frac{Q_{1i} - Q_{2i}}{Q_{1i} + Q_{2i}}\right)^2\right]^{1/2}$                   | $Q_{1i}$ Counts in sub-sample 1<br>$Q_{2i}$ Counts in sub-sample 2<br>n Size of sub-sample                                                 |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Predicted coefficient of error for<br>estimated population – Schmitz-<br>Hof ( <i>CE</i> pred) | $CE_{pred}(n_F) = \sqrt{\frac{Var(Q_r^-)}{R.(Q_r^-)^2}}$ $CE_{pred}(n_F) = \frac{1}{\sqrt{\sum_{r=1}^R Q_r^-}} = \frac{1}{\sqrt{\sum_{s=1}^S Q_s^-}}$ | R Number of counting spaces<br>S Number of sections<br>$Q_r^-$ Counts in the "r"-th counting space<br>$Q_s^-$ Counts in the "s"-th section |

#### References

Geiser, M., Cruz-Orive, L.M., Hof, V.I., & Gehr, P. (1990) <u>Assessment of particle retention and clearance in the intrapulmonary</u> conducting airways of hamster lungs with the fractionator. *Journal of Microscopy, 160* (1), 75–88.

Glaser, E. M., Wilson, P.D. (1998). <u>The coefficient of error of optical fractionator population size estimates: a computer</u> simulation comparing three estimators. *Journal of Microscopy, 192* (2), 163–171.

Gundersen, H.J.G., Vedel Jensen, E.B., Kieu, K., & Nielsen, J. (1999). <u>The efficiency of systematic sampling in stereology</u><u>reconsidered</u>. *Journal of Microscopy*, *193* (3), 199–211.

Gundersen, H. J. G., Jensen, E.B. (1987). <u>The efficiency of systematic sampling in stereology and its prediction</u>. *Journal of Microscopy, 147* (3), 229–263.

Howard, V., Reed, M. (2005). Unbiased stereology: three-dimensional measurement in microscopy (vol. 4, chapter 12). Garland Science/Bios Scientific Publishers.



Image Volume Fractionator (4)

Scheaffer, R.L., Ott, L., & Mendenhall, W. (1996). *Elementary survey sampling* (chapter 7). Boston: PWS-Kent.

Schmitz, C., Hof, P.R. (2000). <u>Recommendations for straightforward and rigorous methods of counting neurons based on a computer simulation approach.</u> Journal of Chemical Neuroanatomy, 20 (1), 93–114.

West, M. J., Slomianka, L., & Gundersen, H.J.G. (1991). <u>Unbiased stereological estimation of the total number of neurons in the</u> subdivisions of the rat hippocampus using the optical fractionator. The Anatomical Record, 231 (4), 482–497.



## IMAGE VOLUME SPACEBALLS

| Length estimate                                  | $L = 2.\left(\sum_{i=1}^{n} Q_i\right) \cdot \frac{v}{a}$<br>This equation does not include the terms F2 (area-<br>fraction) and F3 (thickness-fraction) used by Mouton et<br>al. (equation 2, 2002), but includes that information in v<br>(volume sampled). | n Number of sections used<br>Q <sub>i</sub> Intersection counted<br>v Volume (grid X * grid Y* section<br>thickness)<br>a Surface area of the sphere                                                           |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variance due to noise                            | $s^2 = \sum_{i=1}^n Q_i$                                                                                                                                                                                                                                      | <i>Q<sub>i</sub></i> Intersection counted                                                                                                                                                                      |
| Variance due to<br>systematic random<br>sampling | $VAR_{SRS} = \frac{3(A - s^2) - 4B + C}{12}, m = 0$ $VAR_{SRS} = \frac{3(A - s^2) - 4B + C}{240}, m = 1$                                                                                                                                                      | $A = \sum_{i=1}^{n} (Q_i^{-})^2$<br>$B = \sum_{i=1}^{n-1} Q_i^{-} Q_{i+1}^{-}$<br>$C = \sum_{i=1}^{n-2} Q_i^{-} Q_{i+2}^{-}$<br>$s^2 \text{ Variance due to noise}$<br>m  Smoothness class of sampled function |
| Total variance                                   | $TotalVar = s^2 + VAR_{SRS}$                                                                                                                                                                                                                                  | <i>VAR<sub>SRS</sub></i> Variance due to SRS<br><i>s<sup>2</sup></i> Variance due to noise                                                                                                                     |



#### Image Volume Spaceballs (2)

| Coefficient of error | $CE = \frac{\sqrt{TotalVar}}{s^2}$ | <i>TotalVar</i> Total variance<br><i>s</i> <sup>2</sup> Variance due to noise |
|----------------------|------------------------------------|-------------------------------------------------------------------------------|
|----------------------|------------------------------------|-------------------------------------------------------------------------------|

#### References

Mouton, P. R., Gokhale, A.M., Ward, N.L., & West, M.J. (2002). <u>Stereological length estimation using spherical probes</u>. *Journal of Microscopy*, *206* (1), 54–64.



### **ISOTROPIC FAKIR**

| Estimated total surface area $estS = 2\frac{1}{n} \cdot \sum_{i=1}^{n} \frac{v}{l_i} \cdot I_i$ | <i>n</i> Number of line sets (always set to 3)<br>$\frac{v}{l_i}$ Inverse of the probe per unit volume<br>$I_i$ Intercepts with test lines |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|

#### References

Kubínová, L., Janacek, J. (1998). Estimating surface area by the isotropic fakir method from thick slices cut in an arbitrary direction. Journal of Microscopy, 191 (2), 201–211.



### NUCLEATOR

| Area estimate                          | $a = \pi \overline{l^2}$                                                            | <i>l</i> Length of rays                                                                    |
|----------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Volume estimate                        | $\overline{v_N} = \frac{4\pi}{3} \overline{l_n^3}$                                  | <i>l</i> Length of rays                                                                    |
| Estimated coefficient of<br>error      | $est \ CV(R) = \frac{\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(R_i - \bar{R})^2}}{\bar{R}}$ | <i>n</i> Number of nucleator estimates $R_i$ Area/volume estimate for each sampling site   |
| Average area/volume<br>estimate        | $\bar{R} = \frac{1}{n} \sum_{i=1}^{n} R_i$                                          | $n$ Number of nucleator estimates $R_i$ Area/volume estimate for each sampling site        |
| Relative efficiency                    | $CE_n(R) = \frac{CV(R)}{\sqrt{n}}$                                                  | <i>n</i> Number of nucleator estimates<br><i>CV (R)</i> Estimated coefficient of variation |
| Geometric mean of area/volume estimate | $e^{\left(\frac{1}{n}\sum_{i=1}^{n}lnR_{i}\right)}$                                 | <i>n</i> Number of nucleator estimates $R_i$ Area/volume estimate for each sampling site   |

#### References

Gundersen, H.J.G. (1988). The nucleator. Journal of Microscopy, 151 (1), 3–21.



# **OPTICAL ROTATOR**

| Volume of particle                                                | $\hat{v} = a \sum_{i}^{+/-} g(P_i)$                                                                                                                                                                                                                | <i>a</i> Reciprocal line density<br><i>a=k.h</i><br><i>k</i> Length of slice<br><i>h</i> Systematic spacing                                         |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| For vertical slabs and<br>lines parallel to vertical<br>axis      | $g(P) = d_1, if \ d_2 < t$ $g(P) = \frac{\frac{\pi}{2}d_1}{\arcsin\left(\frac{t}{d_2}\right)}, if \ t \le d_2$                                                                                                                                     | $d_1$ Distance along test line<br>$d_2$ Distance from origin to test line<br>$t$ $\frac{1}{2}$ thickness of optical slice                           |
| For vertical slabs and<br>lines perpendicular to<br>vertical axis | $g(P) = d_1, if \sqrt{d_1^2 + z^2} < t$ $g(P) = f\left(\sqrt{t^2 - z^2}\right), if  z  < t \le \sqrt{d_1^2 + z^2}$ $g(P) = f(0), if t \le  z $ $f(x) = x + \frac{\pi}{2} \int_x^{d_1} \frac{1}{\arcsin\left(\frac{t}{\sqrt{u^2 + z^2}}\right)} du$ | <i>d</i> <sup>1</sup> Distance along test line<br><i>t</i> 1/2 thickness of optical slice<br><i>z</i> Distance in <i>z</i> from intercept to origin |



### Optical Rotator (2)

| For<br>isotropic<br>slabs | $g(P) = d_1,  if \ d_3 < t$ $g(P) = \frac{1}{2t} [h(t, d_2) + k(t, d_1, d_2, d_3)], if \ d_2 < t$ $\leq d_3$ $h(t, d) = t^2 \sqrt{1 - \frac{d^2}{t^2}}$ $k(t, d_1, d_2, d_3) = d_1 d_3 + d_2^2 log \left(\frac{d_1 + d_3}{t + \sqrt{t^2 - d_2^2}}\right)$ | $d_1$ Distance along test line<br>$d_2$ Distance from origin to<br>test line<br>$d_3$ Distance from intercept<br>to origin<br>$t$ $\frac{1}{2}$ thickness of optical<br>slice                        |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimated<br>surface area | $\hat{S} = a \sum_{j} l_{j}g(l_{j})$ $g(l) = 2,  if \ d_{2} < t$ $g(l) = \pi \cdot \frac{1}{\arcsin\left(\frac{t}{d_{2}}\right)},  if \ t \le d_{2}$                                                                                                      | a Reciprocal line density<br>$l_j$ Number of intersections<br>between grid line and cell<br>boundary<br>$d_2$ Distance from origin to<br>test line<br>$t  \frac{1}{2}$ thickness of optical<br>slice |

#### References

Tandrup, T., Gundersen, H.J.G., & Vedel Jensen, E.B. (1997). The optical rotator Journal of microscopy, 186 (2), 108–120.



## PLANAR ROTATOR

| Volume for isotropic<br>planar rotator | $V = 2t \sum_{i} g_{i}$                                                                                                                                                                                                                                                                                                       | $t$ Separation between test lines $g_i$ Isotropic planar rotator function                                                                                                                                                                                                      |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume for vertical<br>planar rotator  | $V = \pi t \sum_{i} l_i^2$                                                                                                                                                                                                                                                                                                    | $t$ Separation between test lines $l_i$ Intercept length along a test line                                                                                                                                                                                                     |
| Isotropic planar rotator<br>function   | $g_{i}(l) = l\sqrt{l^{2} + a_{i}^{2}} + a_{i}^{2}ln\left[\frac{l}{a_{i}} + \sqrt{\left(\frac{l}{a_{i}}\right)^{2} + 1}\right]$ $g_{i+} = \sum_{j  even} g_{i}(l_{i  j+}) - \sum_{j  odd} g_{i}(l_{i  j+})$ $g_{i-} = \sum_{j  even} g_{i}(l_{i  j-}) - \sum_{j  odd} g_{i}(l_{i  j-})$ $g_{i} = \frac{1}{2}(g_{i+} + g_{i-})$ | <ul> <li><i>l</i> Intercept length along a test line</li> <li><i>a</i><sub>i</sub> Distance from origin to test line</li> <li><i>j</i> Number of grid lines</li> <li><i>l</i><sub>ij</sub> Number of intersections between the j-th grid line and the cell boundary</li> </ul> |



#### Planar Rotator (2)

| lsotropic planar rotator<br>function (cont'd) | $l_{i+}^{2} = \sum_{j \text{ even}} l_{i j+}^{2} - \sum_{j \text{ odd}} l_{i j+}^{2}$ $l_{i-}^{2} = \sum_{j \text{ even}} l_{i j-}^{2} - \sum_{j \text{ odd}} l_{i j-}^{2}$ $l_{i}^{2} = \frac{1}{2} (l_{i+}^{2} + l_{i-}^{2})$ | <ul> <li><i>l</i> Intercept length along a test line</li> <li><i>a<sub>i</sub></i> Distance from origin to test line</li> <li><i>j</i> Number of grid lines</li> <li><i>l<sub>ij</sub></i> Number of intersections between the j-th</li> <li>grid line and the cell boundary</li> </ul> |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                         |

#### References

Jensen Vedel, E.B., Gundersen, H.J.G. (1993). The rotator Journal of Microscopy, 170 (1), 35-44.



## SURFACTOR

| Surface area for single-ray<br>designs | $\hat{S} = 4\pi l_0^2 + c(\beta)$                                                                                                      | <ul> <li><i>l</i> Length of intercept</li> <li><i>fs</i> Angle between test line and surface</li> <li><i>c(fs)</i> Function of the planar angle</li> </ul>                                      |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surface area for multi-ray<br>designs  | $\widehat{S} = 2\pi \sum_{j=1}^{2r} l_j^2 \cdot c(\beta)$                                                                              | <ul> <li><i>l</i> Length of intercept</li> <li><i>f</i> Angle between test line and surface</li> <li><i>c(f</i>) Function of the planar angle</li> <li><i>r</i> Number of test lines</li> </ul> |
| Function of the planar angle           | $c(\beta) = 1 + \left[\frac{1}{2}\cot\beta\right] \cdot \left[\frac{\pi}{2} - \sin^{-1}\frac{1 - \cot^2\beta}{1 + \cot^2\beta}\right]$ | ß Angle between test line and surface                                                                                                                                                           |

#### References

Jensen, E.B., Gundersen, H.J.G. (1987). Stereological estimation of surface area of arbitrary particles. Acta Stereologica, 6 (3).