Uncovering the role of microglia in fetal alcohol spectrum disorders

microglia_alcohol

Representative images of Iba-1+ microglia in the postnatal day 10 rat hippocampus. Image courtesy of Anna Klintsova, PhD.

Children born with fetal alcohol spectrum disorders face a range of physical and cognitive impairments including long-term deficits in learning, behavior, and immune function. In a paper published in Neuroscience, Dr. Anna Klintsova and her lab at the University of Delaware report that activation of the brain’s immune response may contribute to some of the damage caused by fetal alcohol spectrum disorders.

In their study, the researchers used Stereo Investigator and Neurolucida to examine the hypothesis that exposure to alcohol while the brain is growing rapidly is associated with abnormal microglial activation and high levels of pro-inflammatory proteins which impair learning-related plasticity; leading to neuro-developmental and psychopathological disorders.

“My lab has been using both Stereo Investigator and Neurolucida for more than a decade in all quantitative neuroanatomical studies, including the featured one,” said Dr. Anna Klintsova. “We find this software to be user-friendly, reliable and essential for obtaining unbiased results.”

They used Stereo Investigator to quantify the number of microglia in the hippocampus of neonatal rats who were exposed to alcohol during the equivalent of the third trimester of a human pregnancy. The researchers expected to see an increased number of microglia in alcohol-exposed neonatal rats, however they found a decreased number of microglia. Despite the decrease in microglia number, there was a significant increase in pro-inflammatory proteins expressed by microglia and an increase in microglial activation.

To measure microglial activation, the researchers quantified the area of cell territory using Neurolucida. Activated microglia have a smaller cell territory than resting microglia, so the smaller cell territory found in alcohol exposed rats indicates a more active state.

This research supports the hypothesis that abnormal microglia activation plays a role in fetal alcohol spectrum disorders, however more research is needed to further understand the relationship.

Boschen, K., Ruggiero, M.J., Klintsova, A.Y., (2016) Neonatal binge alcohol exposure increases microglial activation in the developing rat hippocampus. Neuroscience 324: 355–366. DOI: 10.1016/j.neuroscience.2016.03.033

 

Stereological Study Reveals Neuron and Glia Proliferation in Hippocampus of Lithium-Treated Mice

Dentate gyruspilot

The optical fractionator probe was used to quantify the number of neurons and glia in the dentate gyrus

Doctors have used lithium to treat patients with bipolar disorder since the 1970s. Known for its efficacy in stabilizing patients’ moods by regulating manic episodes, lithium is also associated with a decreased risk of suicide. But while this naturally occurring element is the most widely prescribed medication for those suffering from bipolar disorder, scientists still have much to learn about how lithium physically affects the brain.

A recent study published in the journal Bipolar Disorders adds to the growing body of evidence that says lithium contributes to cell proliferation in parts of the brain. Conducted by scientists at the University of Mississippi and the VU University Medical Center in Amsterdam, the study revealed an increased number of neurons and glia, and increased astrocyte density in the dentate gyrus of lithium-treated mice versus controls treated with a placebo.

Using the optical fractionator probe in Stereo Investigator, the researchers quantified the number of Nissl stained neurons and glial cells, and calculated astrocyte density. The results showed twenty-five percent more neurons and twenty-one percent more glia in the denate gyrus of lithium-treated mice. They also performed a stereological examination of another brain region – the medial prefrontal cortex (mPFC), but did not witness significant differences between lithium-treated and control mice in this area.

“In this study, particular cortical regions, ie. the fascia dentata in the hippocampus and the mPFC in the cerebral cortex needed to be selected in histological sections of the mice brains,” explained Dr. Harry B.M. Uylings, “therefore the stereological counting procedure applied was the best one. Stereo Investigator greatly assisted in the counting of cells, and the software’s excel data-output was especially beneficial.”

According to the paper, the findings present a more detailed picture of lithium-induced alterations in the dentate gyrus cellular phenotype than previously available, and provide the first evidence for lithium-induced increases in glia and astrocytes.

The authors also explain that while cell number increased in the dentate gyrus of lithium-treated mice, the region’s overall volume as well as that of the greater hippocampus was unaffected by the element. The volume of the dentate gyrus and the hippocampus as a whole was measured with the Cavalieri method in Stereo Investigator.  The researchers describe the dissociation between cell proliferation and volume as “an interesting observation that warrants further investigation.”

Rajkowska, G., Clarke, G., Mahajan, G., Licht, C.M., van de Werd, H.J., Yuan, P., Stockmeier, C.A., Maji, H.K., Uylings, H.B., Differential effect of lithium on cell number in the hippocampus and prefrontal cortex in adult mice: a stereological study. Bipolar Disord. 2016 Feb;18(1):41-51. doi: 10.1111/bdi.12364.

Iron Deficiency Worsens Fetal Alcohol Spectrum Disorders

An immunostained image of myelin basic protein in the cerebella of a mouse brain with an iron-sufficient diet compared with the brain of a mouse exposed to alcohol and fed an iron-insufficient diet. It shows the reduced cerebellar size due to the ID-alcohol combination. Green is MBP immunostain, blue is DAPI for nuclei.

An immunostained image of myelin basic protein in the cerebella of a mouse brain with an iron-sufficient diet compared with the brain of a mouse exposed to alcohol and fed an iron-insufficient diet. It shows the reduced cerebellar size due to the ID-alcohol combination. Green is MBP immunostain, blue is DAPI for nuclei. Image courtesy of Susan Smith, PhD.

If a pregnant woman drinks alcohol, she risks giving birth to a baby with physical and cognitive deficits – characteristics of fetal alcohol spectrum disorders. In a new study, researchers say that when the mother is low in iron, the consequences are even worse.

The scientists examined two groups of pregnant rats – one group was fed an iron sufficient diet while the other was fed a diet with insufficient iron levels. The offspring from both groups were exposed to alcohol from 4 to 9 days after birth – a time when their brains are going through a growth spurt and are particularly sensitive to alcohol. They were compared to offspring who received an iron-sufficient diet but were not exposed to alcohol. This growth spurt correlates to a growth spurt in humans that occurs during the third trimester of pregnancy.

The researchers used delay and trace eye blink classical conditioning methods to assess the offspring’s learning and memory. Learning impairments were reported in both alcohol-exposed groups regardless of their iron status, but more extreme impairments were seen in iron deficient rats compared to iron sufficient rats. After the behavioral tests were completed, the researchers studied the cerebellum and hippocampus – brain regions involved in learning and memory – at a cellular level.

Continue reading “Iron Deficiency Worsens Fetal Alcohol Spectrum Disorders” »

Genetic Mutation Accelerates CTE Pathology

Phosphorylated tau pS422 immunoreactive profiles in the cortex of P301Smice after repetitive mild TBI. Image courtesy of Dr. Leyan Xu.

Phosphorylated tau pS422 immunoreactive profiles (dark brown) in the cortex of P301S mice after repetitive mild TBI. Image courtesy of Dr. Leyan Xu, Department of Pathology, Johns Hopkins University.

Over the course of a football game or a boxing match, athletes may experience a series of mild concussions. Some of these athletes develop a condition known as chronic traumatic encephalopathy (CTE), a neurodegenerative disease characterized by the build-up of abnormal tau protein that eventually leads to dementia. But not every athlete develops CTE after repetitive mild traumatic brain injury, and scientists think genetic factors are involved.

In a recent study, researchers at the Johns Hopkins University School of Medicine found that the density of abnormal tau protein increased exponentially in mice that had a genetic mutation thought to cause neurodegenerative diseases. Their findings contrast with previous studies of mice without genetic mutation, where abnormal tau protein build-up did not occur. This evidence leads the scientists to infer that genetic factors play a role in the onset of CTE.

Continue reading “Genetic Mutation Accelerates CTE Pathology” »

Dying neurons in Alzheimer’s patients show signs of improvement after gene therapy

nucleus basalis of Meynert

Micrograph of cholinergic neurons in the nucleus basalis of Meynert. Image from Wikipedia.

 

Cholinergic neurons degenerate at devastating rates in Alzheimer’s disease, but Dr. Mark Tuszynski and his team at the University of California, San Diego may have found a way to slow the decline.

Their study, published in JAMA Neurology, reports that nerve growth factor gene therapy increased the size, axonal sprouting, and signaling of cholinergic neurons in 10 Alzheimer’s disease patients.

The patients were enrolled in a clinical trial between 2001 and 2012. Ex vivo and in vivo methods of gene therapy were used to deliver nerve growth factor – a protein that protects neurons and stimulates growth – to the patients. Eight received an implant of their own skin cells that were genetically modified to express nerve growth factor (ex vivo ) and two patients received injections that induced neurons already in the brain to express nerve growth factor (in vivo). In all 10 patients, gene therapy was delivered to the nucleus basalis of Meynert – part of the basal forebrain rich in cholinergic neurons that undergoes degeneration during Alzheimer’s disease. 

The patients’ survival time ranged from one to 10 years. After they had died, researchers analyzed the effects of nerve growth factor on cholinergic neurons.

The axons of cholinergic neurons, labeled with p75, grew toward the source of the nerve growth factor in all 10 patients. To determine if there was a change in cell size, researchers used the nucleator probe in Stereo Investigator to analyze cholinergic neurons of 3 patients who received gene therapy via the ex vivo method in one hemisphere – the other hemisphere was used as a control. Results from Stereo Investigator showed that cell bodies were larger in the treated hemisphere vs. the untreated hemisphere.

Finally, to find out if nerve growth factor induced signaling within cells, the researchers analyzed the amount of CREB and c-fos – markers for cell activation – in 2 patients who received nerve growth factor in vivo. An elevated amount of CREB and c-fos was found when compared to control regions. Neurons exhibiting tau pathology also expressed nerve growth factor, indicating that degenerating cells could respond to nerve growth factor gene therapy.

A phase 2 clinical study is currently under way to report cognitive outcomes in patients with Alzheimer’s disease.

“Collectively, these anatomical findings support the rationale for clinical trials to test the hypothesis that sustained growth factor delivery over time can reduce cell degeneration and stimulate cell function in chronic neurodegenerative disorders, thereby slowing functional decline,” Tuszynski, et al.

Tuszynski, M.H., Yang, J.H., Pay, M.M., Masliah, E., Barba, D., U, H.S., Conner, J.M., Kobalka, P., Roy, S., and Nagahara A.H. (2015). Nerve Growth Factor Gene Therapy: Activation of Neuronal Responses in Alzheimer Disease. JAMA Neurology, published online August 24, 2015. DOI: 10.1001/jamaneurol.2015.1807.

Delayed loss of neurons occurs in mice with mild TBI and anxiety

Almeida-Suhett et al saw delayed loss of GABAergic interneurons in the BLA within the first week after mild CCI. (Representative photomicrographs of GAD-67 immunohistochemically stained GABAergic interneurons in the BLA of sham (left), 1-day CCI (middle), and 7-day CCI (right) animals. Total magnification is 630x; scale bar, 50 µm.)

Almeida-Suhett et al saw delayed loss of GABAergic interneurons in the BLA within the first week after mild CCI. (Representative photomicrographs of GAD-67 immunohistochemically stained GABAergic interneurons in the BLA of sham (left), 1-day CCI (middle), and 7-day CCI (right) animals. Total magnification is 630x; scale bar, 50 µm.)

Soldiers, athletes, and other individuals who suffer a traumatic brain injury often develop anxiety disorders, but scientists aren’t sure why. Some speculate that fear about future health or the stress of the trauma itself contributes to elevated anxiety, while others suspect changes happening inside the brain as a result of the injury are to blame.

Researchers at Maria Braga’s lab at the Uniformed Services University of the Health Sciences in Bethesda, Maryland, recently found direct evidence that physical changes happen in the brain after TBI that coincide with increased anxiety levels.

She and her team studied a rat model of mild TBI, focusing on the basolateral amygdala (BLA) – a brain region often damaged by TBI, which has also been associated with increased fear and anxiety in instances of hyperactivity.

To find out what happens in the BLA that might be causing anxiety after a mild TBI, the researchers analyzed changes in synaptic activity in this region. Using Stereo Investigator with the optical fractionator probe to perform a stereological quantification of Nissl-stained and GAD-67 immunostained brain cells, they found that many of the inhibitory neurons – the cells that quiet activity – were lost seven days after injury. Whole cell recordings from principal neurons confirmed that the inhibitory cells’ synaptic transmissions were impaired during this period, resulting in increased excitability and “open field tests” showed elevated anxiety levels in post-injury rats at the exact same time point. Continue reading “Delayed loss of neurons occurs in mice with mild TBI and anxiety” »

Higher levels of pTau found in Alzheimer’s disease patients with psychosis

murray_ptau

An image of neurofibrillary tangles and neuropil threads

People with Alzheimer’s disease suffer from severe memory loss and often have problems focusing, reasoning, and communicating. About half of all Alzheimer’s patients also experience delusions and hallucinations, this is called Alzheimer’s disease with psychosis, and scientists at the University of Pittsburgh are learning more about this severe version of the disease.

In a recent study, researchers at Dr. Robert Sweet’s lab zeroed in on a protein called tau, which forms tangles in the brains of Alzheimer’s patients, and along with amyloid plaques is one of the major hallmarks of the disease. But despite being involved in these pathological conditions, tau and amyloid may instigate other processes as well – namely, synaptic toxicity, which the authors say is “the strongest correlate of cognitive decline in Alzheimer’s disease.”

Recent research suggests that amyloids (misfolded proteins) drive the deterioration of synapses, but phospho-tau (tau, which has undergone phosphorylation), enables the process. So in their study the Pittsburgh research team analyzed the presence of tau in the prefrontal cortex, a region of the brain involved in higher processes, of 45 Alzheimer’s disease patients with and without psychosis.

Continue reading “Higher levels of pTau found in Alzheimer’s disease patients with psychosis” »

New Neurons Erase Memories

Dentate gyrus

Neurogenesis occurs in the dentate gyrus, pictured here, from birth through adulthood.

A baby laughs at an elephant at the zoo. A toddler runs across a beach. Small children make memories all the time, but how many will they recall as the years pass? Maybe none at all. The phenomenon is called “infantile amnesia,” and scientists may have pinpointed a reason for why it occurs – neurogenesis.

Researchers at the Hospital for Sick Children in Toronto say that when new brain cells integrate into existing circuitry, they remodel the structure of networks already in place, wiping out the information previously stored there. This process is prevalent in infancy and early childhood because this is the time when new brain cells are being generated faster and more frequently than at any other time in a human being’s life. Humans and other mammals spawn new neurons throughout their lifespans, although the rate of neurogenesis decreases significantly with age.

In their paper, published in Science, the researchers explain how recent studies have focused on how new brain cells can lead to new memories, but the Toronto team speculated that neurogenesis could also wipe away memories. To test their hypothesis, they conducted a series of studies on populations of newborn and adult mice. Neuron development in mice occurs in much the same way as in humans, with rapid cell genesis in infancy that tapers off with age.

Continue reading “New Neurons Erase Memories” »

Scientists Use Stereo Investigator in Spinal Cord Injury Study

Stereo Investigator Graphic

After an initial spinal cord injury, a cascading series of secondary events continues to do damage to the nervous system. One particularly damaging event is the death of oligodendrocytes—neuroglial cells that help protect and support the central nervous system. Scientists are learning more about the mechanisms involved in this process in the hope that their research may lead to the development of new therapeutic treatments for stopping some of the secondary damage before it occurs.

Researchers at the Miami Project to Cure Paralysis previously found that astrocytes play a role in oligodendrocyte death after spinal cord injury, but they weren’t quite sure how. Their new study identifies a culprit – an enzyme called NADPH oxidase. According to their paper, published in PLOS One, astrocytes activate NADPH oxidase within oligodendrocytes after an injury, triggering a toxic effect in the tiny neural cells.

In their study, the researchers set out to see what would happen if they could prevent post-trauma NADPH oxidase activation. Their results proved promising, with both in vitro and in vivo experiments resulting in lower oligodendrocyte death.

Continue reading “Scientists Use Stereo Investigator in Spinal Cord Injury Study” »

Scientists Map Photoreceptor Cells of Deep-Sea Sharks

Topographic mapping of photoreceptor cells. a Scleral eyecup with the retina uppermost, where peripheral slits have been made to allow flattening. The retina is then carefully removed from the sclera, freed of the underlying choroidal tapetum lucidum and wholemounted onto a non-subbed slide. Scale bar = 1 cm. b Screen shot taken from Stereo Investigator showing the green inclusion line and the red exclusion line overlaid on the rod photoreceptor array, viewed here on the axial plane. Colors are visible online only. Scale bar = 10 μm. c Optic nerve head as seen under a light microscope. Note the fascicles or bundles of ganglion cell axons converging on the optic nerve head. Scale bar = 200 μm.

a. Topographic mapping of photoreceptor cells. a Scleral eyecup with the retina uppermost, where peripheral slits have been made to allow flattening. The retina is then carefully removed from the sclera, freed of the underlying choroidal tapetum lucidum and wholemounted onto a non-subbed slide. Scale bar = 1 cm. b. Screen shot taken from Stereo Investigator showing the green inclusion line and the red exclusion line overlaid on the rod photoreceptor array, viewed here on the axial plane. Colors are visible online only. Scale bar = 10 μm. c. Optic nerve head as seen under a light microscope. Note the fascicles or bundles of ganglion cell axons converging on the optic nerve head. Scale bar = 200 μm.

The deepest parts of the ocean are dark. For marine animals living one thousand feet below sea level and lower, the absence of light makes it challenging to find food, attract a mate, and identify predators.

Some animals make their own light through a process called bioluminescence. Others have adapted in ways that help them detect light in an environment beyond the reach of the sun’s rays.

In the first stereological study of the eyes of deep sea sharks, scientists in Queensland, Australia quantified photoreceptor cell populations and mapped their topography in the retina of five different species of deep sea sharks.

The sharks, including the Borneo catshark, the longsnout dogfish, the prickly dogfish, the beige catshark, and McMillan’s catshark, were caught in the nets of deep-sea fishermen off the coast of New Zealand. Each type of shark featured large, round pupils and a tapetum lucidum, a reflective structure at the back of the eye – two common adaptations deep-sea animals use to enhance sensitivity in environments where bioluminescence is the only available light source, according to the paper.

Continue reading “Scientists Map Photoreceptor Cells of Deep-Sea Sharks” »