Scientists Use Neurolucida in Study of Calcium Signaling During Spontaneous Brain Activity


A drawing of an L2 pyramidal neuron in the auditory cortex of a mouse brain rendered with Neurolucida. Biocytin-labeled neurons were visualized using the avidin:biotinylated horseradish peroxidase complex. Neurons were completely reconstructed in 3D with Neurolucida using an up-right Zeiss microscope with an oil immersion x100/1.4 numerical aperture objective.

Sensory stimuli are all around us. Street traffic zooms by. A neighbor waves “hello.” A co-worker taps away at his keyboard. Each sight, sound, and motion ignite action within our brains. But even without all these stimuli, the brain is always active.

Known as “spontaneous activity,” the activity happening inside the brain in the absence of direct stimuli follows a pattern of up and down states that scientists say is essential for processing sensory signals. Spontaneous activity may also be involved in memory.

Scientists from the Brain Research Center at the Third Military Medical University (Chongqing, China), the Center for Integrated Protein Science, SyNergy Cluster, and the Institute of Neuroscience at the Technical University of Munich (Germany) are working on figuring out how the activity occurring in the brain during “spontaneous activity” compares with what goes on during periods of sensory stimuli. Specifically, they’re looking at calcium signaling – an important element in synaptic activity during periods of both sensory stimuli and spontaneous activity, that helps neurons transmit information to other parts of the brain and body.

Continue reading “Scientists Use Neurolucida in Study of Calcium Signaling During Spontaneous Brain Activity” »