Boston University Scientists Use AutoNeuron and AutoSynapse to Compare Neurons in the Visual and Prefrontal Cortices

MBF_Figure

Use of Neurolucida to assess the detailed morphology – including spines and synapses – of a layer 3 pyramidal neuron from the anterior cingulate cortex of a rhesus monkey. A) 40x confocal image of a layer 3 pyramidal neuron that was filled with biocytin during whole-cell patch-clamp recordings and subsequently processed with Alexa-Streptavidin-488. B) Basilar dendritic segment (indicated by the box in A), scanned in 2 channels: green= the neuron; red= VGat. C) Dendritic reconstruction indicated in light blue. Spine subtypes identified by the AutoSpine module (magenta= mushroom; yellow= thin; red= stubby). D) VGat-positive appositions (indicated by white dots) against the dendritic shaft and spines identified with AutoSynapse. Scale bars: A= 20 µm; B= 2 µm

The ball comes flying and you swing the bat. A car pulls out and you hit the brakes. As we go about our daily routines, we process everything we see in a region in the back of our brains known as the visual cortex. But when we sit down to plan a kitchen remodel, or next summer’s vacation, an area in the front of the brain gets activated, the prefrontal cortex, a region involved in higher level thinking.

Recent research has offered insight into the structure and function of neurons in these two distinct brain regions. Scientists at the Luebke Lab at Boston University set out to find out more about their morphology, and if their structural differences affect their behavior. Their study, published in the Journal of Neuroscience offers evidence that pyramidal neurons in the primary visual cortex (V1) and dorsolateral granular prefrontal cortex (dlPFC) of the rhesus monkey display “marked electrophysiological and structural differences.”

“We chose to examine these two areas because they represent distinct ends of the spectrum of neocortical complexity and specialization, from primary sensory processing by V1 to mediation of high-order cognitive processes by dlPFC,” the authors say in their paper.

Continue reading “Boston University Scientists Use AutoNeuron and AutoSynapse to Compare Neurons in the Visual and Prefrontal Cortices” »