Dendritic Spine Loss Reported in Schizophrenia and Bipolar Disorder

Golgi-stained human brain tissue from the dorsolateral prefrontal cortex.

Golgi-stained human brain tissue from the dorsolateral prefrontal cortex.

Schizophrenia and bipolar disorder are very different mental illnesses, but researchers are discovering evidence that the two disorders have some common pathologies. According to a recent study, a shared characteristic appears to be dendritic spine loss.

The researchers used Neurolucida to study pyramidal cells in human brain tissue from individuals with schizophrenia (n=14), individuals with bipolar disorder (n=9) and unaffected control participants (n=19). The pyramidal cells were located in the dorsolateral prefrontal cortex – a region that plays a key role in working memory. Bipolar patients showed significantly reduced spine density (10.5 percent) compared to control. Schizophrenic patients also showed lower spine density (6.5 percent), but this number just missed significance when compared to control patients. Individuals with both illnesses showed a lower number of spines per dendrite, as well as reduced dendritic length compared to controls.

To obtain these results, researchers analyzed 15 Golgi-stained pyramidal cells in each tissue sample. They used Neurolucida to reconstruct the longest dendrite on the pyramidal cells and to mark spines. After the researchers finished reconstructing the cells, Neurolucida provided them with important data about the dendrites and spines.

Continue reading “Dendritic Spine Loss Reported in Schizophrenia and Bipolar Disorder” »